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Chapter 7 
 
ONTOLOGIES- AND STANDARDS-BASED APPROACHES TO INTEROPERABILITY FOR 
CONCURRENT ENGINEERING 
 
 
L. C. Pouchard,  A.F. Cutting-Decelle 
 
7.1. INTRODUCTION 
 
As the use of information technology and computer-driven systems in manufacturing and 
construction design has matured, the necessity for software applications to work together, 
exchange data, processes and information has become crucial to the conduct of business and 
operations in organisations. This capability is referred to as interoperability (Pouchard 2000), 
(Pouchard 2002), (Ray 2003).  To be competitive and maintain good economic performance, 
organisations need to employ increasingly effective and efficient data and computer systems. Such 
systems should result in the seamless integration of application data and exchange of processes 
between applications. Organisations should also be able to conserve and retrieve on demand the 
knowledge contained in their business and operational processes, regardless of the applications 
used to produce and handle these processes.   
 
With the increasing need for enterprise integration, developers face more complex problems 
related to inter-operability. Independent contractors and suppliers who collaborate on demand 
within virtual supply chains must share product-related data.  Vendor applications that are not 
designed to inter-operate must now share processes. When enterprises collaborate, a common 
frame of reference or at least a common terminology is necessary for human-to-human, human-to-
machine, and machine-to-machine communication. Similarly, within a core enterprise where 
distributed collaboration between remote sites and production units take place, a common 
understanding of business- and manufacturing-related terms is indispensable.  However, this 
common understanding of terms is often at best implicit in the business transactions and software 
applications and may not even be always present.  Misunderstandings between humans 
conducting business-related tasks in teams, and ad-hoc translations of software applications 
contribute to the rising costs of interoperability in manufacturing.    
 
Standard-based approaches and ontologies offer a direction addressing the challenges of 
interoperability brought about by semantic obstacles, i.e. the obstacles related to the definitions of 
business terms and software classes.  An ontology is a taxonomy of concepts and their definitions 
supported by a logical theory (such as first-order predicate calculus).  Ontologies have been 
defined as an explicit specification of a conceptualization  (Gruber 1993). An ontology expresses, 
for a particular domain, the set of terms, entities, objects, classes and the relationships between 
them, and provides formal definitions and axioms that constrain the interpretation of these terms 
(Gomez-Perez 1998). An ontology permits a rich variety of structural and nonstructural 
relationships, such as generalization, inheritance, aggregation, and instantiation and can supply a 
precise domain model for software applications (Huhns and Singh 1997).  For instance, an 
ontology can provide the object schema of object-oriented systems and class definitions for 
conventional software (Fikes, Farquhar 1999). Ontological definitions, written in a human 
readable form, can be translated into a variety of logical languages. They can also serve to 
automatically infer translation engines for software applications.  By making explicit the implicit 
definitions and relations of classes, objects, and entities, ontology engineering contributes to 
knowledge sharing and re-use (Gomez-Perez 1998).  Ontology  engineering aims at making 
explicit the knowledge contained within software applications, and within enterprises and business 
procedures for a particular domain and includes a set of tasks related to developing ontologies for 
a particular domain. 
 
Interoperability in manufacturing refers to the ability to share technical and business information 
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seamlessly throughout an extended enterprise (supply chain) (Ray, Jones 2003). This information, 
previously shared in a variety of ways including paper and telephone conversations, must now be 
passed electronically and error-free with suppliers and customers around the world. A study, 
achieved by the NIST in 2002 (NIST, 2002) was aimed at identifying the economic impact of the 
use of standards in industry, particularly the ISO 10303 STEP standard with the objective of 
conducting an economic impact assessment of STEP’s use by transportation equipment industries, 
namely the automotive, aerospace, shipbuilding, and specialty tool and die industries. Both the 
full potential and current realized benefits are quantified. In addition, the study investigates the 
impact of NIST’s administrative and technical contributions to STEP. The authors of the study 
estimate the economic value of the efficiency gains due to improved data exchange enabled by 
using STEP, and quantify NIST’s contributions to those gains. Data collected from industry 
surveys and case studies are used to estimate the potential benefits of existing STEP capabilities. 
They estimate that STEP has the potential of save $928 million (in 2010) per year by reducing 
interoperability problems in the automotive, aerospace, and shipbuilding industries. Currently 
approximately 17 percent ($156 million) of the potential benefits of STEP quantified within the 
scope of this study are being realized. A previous study commissioned by NIST (NIST, 1999) in 
1999, had reported that the U.S. automotive sector alone expended one billion dollars per year to 
resolve interoperability problems. The study also reported that as much as 50% of this expenditure 
is attributed to dealing with data file exchange issues. 
 
7.2. INTEROPERABILITY IN CONSTRUCTION: WHAT DO WE MEAN? 
 
7.2.1 Information Systems in Construction: Specificity and Main Features 
Information systems become increasingly important in industrial companies for acquiring, 
structuring, and exchanging complex technical data that they have to handle during the production 
process. The intrinsic complexity of the information becomes yet more complex with the 
relational structuring of the data. This structure is necessary in order to select among the set of 
possible solutions the most competitive ones in answer to given specifications. This is particularly 
true for construction SMEs, since they are often exposed to situations for which they have neither 
the necessary skills nor the tools enabling a continuous updating of the technical information 
needed by the projects they work on and the software tools they use (Cutting-Decelle, Dubois, in 
Bestougeff et al., eds, 2002). 
 
Fundamentally, the construction industry is characterised by: 
 
- an increasing complexity with an acceleration of the relations among the partners, particularly in 
a CE context, alongside a dramatic reduction of the lead-time between the call for tender and the 
operation of the building (Anumba et al. 1999) ; 
- an increasing diversity of the information and data handled, mainly due to the development of 
new representation structures (use of standard messages such as EDIFACT messages, use of 
product data -de facto or de jure- standards: STEP, P-LIB and IFCs, as we will see in this chapter; 
- the development of new software tools capable of dealing with the increasing volume and 
diversity of information, although, most of the time, without any interoperability between them ; 
- a great heterogeneity of the information handled, since a normal construction project requires 
several documents simultaneously. These include drawings, calculation, technical notes, bills of 
materials and other kinds of technical analysis, as well as documents (legal or not) containing 
information related to the different building components. 
 
The evaluation of the degree of elaboration of an information system starts with the possibility to 
identify and to interface, when possible, existing document repositories or product databases, 
regardless of their structuring and location. 
 
7.2.2. The Concept of Interoperability 
Interoperability is ‘the ability of software and hardware on multiple machines from multiple 
vendors to communicate.’ (FOLDOC)  
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“Interoperability” is considered as “the ability of a system or a product to work with other systems 
or products without special effort on the part of the customer. Interoperability becomes a quality 
of increasing importance for information technology products as the concept that "The network is 
the computer" becomes a reality”. (Whatis) 
 
For P. Miller (Interoperability, 2000) : “to be interoperable, one should actively be engaged in the 
ongoing process of ensuring that the systems, procedures and culture of an organisation are 
managed in such a way as to maximise opportunities for exchange and re-use of information, 
whether internally or externally.” 
 
Based upon this definition, it should be clear that there is far more to ensuring interoperability 
than using compatible software and hardware. Rather, assurance of effective interoperability will 
require often radical changes to the ways in which organisations work and, especially, in their 
attitudes to information. 
 
Different approaches to the challenges of interoperability exist.  One is likely to find them in 
combination in real-world problems: 
 
- A standard-based approach : the most straightforward aspect of maintaining interoperability. 
Consideration of technical issues includes ensuring an involvement in the continued development 
of communication, transport, storage and representation standards. Work is required both to 
ensure that individual standards move forward to the benefit of the community, and to facilitate 
where possible their convergence, such that systems may effectively make use of more than one 
standards-based approach. 
 
- A software engineering approach: In this approach, software developers and quite often users 
who need the data outputs of an application as input to another write some syntactic parsers that 
allow the language and/or the data structures of the output to be mapped to the structures and 
language of the second application.  This approach does not take into account the semantic 
conflicts and gaps described below.  Furthermore, the mappings between two applications are ad 
hoc, that is left to the subjective understanding of concepts by developers.  Finally, each time a 
new application or even a new version of an existing application occurs, the parsers need to be 
modified.   
 
- A semantic interoperability approach : Semantic interoperability presents a host of issues, all of 
which become more pronounced as individual resources — each internally constructed in their 
own semantically consistent fashion — are made available through 'gateways' and 'portals'. 
Almost inevitably, these discrete resources use different terms to describe similar concepts 
(“slab”, “floor”, “level”, “surface”, for example), or even use identical terms to mean very 
different things, introducing ambiguïty and error into their use.  This situation is troubling because 
the errors introduced are not necessarily explicit and may induce errors in analysis or design.    
There are also other kinds of interoperability, among which we will mention : human 
interoperability, inter-community interoperability, legal interoperability. In this chapter, we will 
focus on technical interoperability among software tools used by the professionals of the 
construction sector. 
 
7.2.3 The Need for Interoperability 
Being seen to "be interoperable" is becoming increasingly important to a wide range of 
organisations, projects, even companies. In each case undeniably valuable information is being 
made available to a wide range of users, often for the first time. The drive towards interoperability 
will necessarily lead to changes in the way the organisations operate. One of the aims of this book 
is to show that concurrent engineering provides a valuable tool of the interoperability. 
 
A truly interoperable organisation is able to maximise the value and reuse the potential of 
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information under its control. It is also able to exchange this information effectively with other 
equally interoperable bodies, allowing new knowledge to be generated from the identification of 
relationships between previously unrelated sets of data. 
 
The lack of interoperability is very costly to some industrial sectors.  But changing internal 
systems and practices to make them interoperable is a non-trivial task. However the benefits for 
the organisation and those making use of information it publishes are potentially incalculable, as 
mentioned in the introduction to this chapter.  
 
7.2.4 The Potential of Standards to Increase Interoperability 
There are three principal approaches to compensate for the lack of interoperability:  
 
The first is a point-to-point customized solution, which can be achieved by contracting the 
services of systems integrators. This approach is expensive since each pair of systems needs a 
dedicated solution.  
A second approach, adopted in some large supply chains, requires all partners to conform to a 
particular solution. This approach does not solve the interoperability problem since the first or 
sub-tier suppliers are forced to purchase and maintain multiple, redundant systems.   It can also be 
costly to the smaller organizations in a supply chain since they are rarely in a position to influence 
the choice of infrastructure, and may not have enough resources to comply.   
The third approach involves neutral, open, published standards. By adopting open standards the 
combinatorial problems is reduced from n2 to n, with bi-directional translators.  
 
Published standards also offer some stability in the representation they propose of the information 
models, an essential property for long-term data archiving. This chapter highlights some of the 
standards developed within the ISO TC184 “Industrial Automation Systems and Integration” 
Committee, particularly those relevant to the construction sector (ISO).  
 
But the problem is far from solved. Interoperability standards are used in layers, from the cables 
and connectors, through networking standards, to the application or content standards such as 
those mentioned here, that is STEP, P-LIB and PSL (Process Specification Language). All of 
these layers must function correctly for interoperability to be achieved. The greatest challenges 
remain at the top of this stack of standards, in order to make them inter-operable. Due to the 
capability of the PSL language to be extended (through its ontology) for accommodating concepts 
in other standards, this language can be considered as a powerful tool of this interoperability, 
enabling, for a near future, the consideration of a “universal interfacing”. 
 
We present in the following sections some of the main (de facto and de jure) standards that can be 
used in construction. Since this approach of the construction sector with an interoperability based 
on standards is rather new, we describe the most known in the domain of product data modelling 
(ISO 10303 STEP, ISO 13584 P-LIB and IAI/IFCs) but also a new standard used for the 
specification of process related information, the ISO 18629 PSL standard. This PSL language 
brings an important contribution to the problem of the semantic ambiguïty met in the information 
exchanges. 
 
7.3. INTERNATIONAL STANDARDS DEVELOPED BY THE ISO TC 184 COMMITTEE 
 
The ISO TC184 is one of the one two hundred committees managed by the ISO (International 
Standardisation Organisation, Geneva, CH) (ISO), its scope is : “Standardisation in the field of 
industrial automation and integration concerning discrete part manufacturing and encompassing 
the applications of multiple technologies, i.e. information systems, machines and equipments and 
telecommunications”. This means that the standards developed are applicable to manufacturing 
and process industries, applicable to all sizes of business, applicable to extending exchanges 
across the globe through e-business.  
Are excluded from the scope the following domains : electrical and electronic equipment (dealt 
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with by the IEC/TC44) and programmable logical controllers for general applications 
(IEC/TC65). The scope of the committee means that the standards developed are : applicable to 
manufacturing and process industries, applicable to all sizes of business, applicable to extending 
exchanges across the globe through e-business.  
The standards developed by the ISO TC184 and its different sub-committees  cover various 
domains related to industrial automation and integration, among which: enterprise modelling, 
enterprise architecture, communications and processes, integration of industrial data for exchange, 
access and sharing, life cycle data for process plants, manufacturing management, mechanical 
interfaces and programming methods, part libraries, physical device control, Process Specification 
Language (PSL), product data, and robots for manufacturing environment (Cutting-Decelle et al, 
2004-1). 
 
7.3.1 ISO 10303 STEP 
Each part of ISO 10303 contains the following introductory paragraph that summarizes the 
significant challenges undertaken in this standardization effort (Kemmerer, 1999): 
"ISO 10303 is an International Standard for the computer-interpretable representation and 
exchange of product data. The objective is to provide a neutral mechanism capable of describing 
product data throughout the lifecycle of a product, independent from any particular system. The 
nature of this description makes STEP suitable not only for neutral file exchange, but also as a 
basis for implementing, sharing product databases, and archiving (IS 10303-1, 1994).” 
 
STEP was designed to be the successor of exchange standards such as IGES, SET, and VDA-FS 
with the notable difference that it was intended to do more than support exchange of product data. 
STEP is intended to support data sharing and data archiving. These distinguishing concepts are 
given below: 
 
Product data exchange: the transfer of product data between a pair of applications. STEP defines 
the form of the product data that is to be transferred between a pair of applications. Each 
application holds its own copy of the product data in its own preferred form. The data conforming 
to STEP is transitory and defined only for the purposes of exchange. 
Product data sharing: the access of and operation on a single copy of the same product data by 
more than one application, potentially simultaneously. STEP is designed to support the interfaces 
between the single copy of the product data and the applications that share it. The applications do 
not hold the data in their own preferred forms. The architectural elements of STEP may be used to 
support the realization of the shared product data itself. The product data of prime interest in this 
case is the integrated product data and not the portions that are used by the particular product data 
applications. 
Product data archiving: the storage of product data, usually long term. STEP is suitable to support 
the interface to the archive. As in product data sharing, the architectural elements of STEP may be 
used to support the development of the archived product data itself. Archiving requires that the 
data conforming to STEP for exchange purposes is kept for use at some other time. This 
subsequent use may be through either product data exchange or product data sharing.  
 
Early in the development of ISO 10303, SC4 (ISO TC184/SC4) recognized that the scope of the 
standard was extremely large. This fact resulted in a couple of fundamental assumptions that 
shaped the architecture of STEP. SC4 assumed it unlikely that any one organization would 
implement the entire ISO 10303, due to its large scope. Therefore, it made sense to separate the 
standard into parts, where an organization would implement only the subset of parts needed to 
satisfy the requirements of their operation. Another primary concept contributing to the 
architecture is that the content of the standard is to be completely driven by industrial 
requirements. This, in combination with the concept that the re-use of data specifications is the 
basis for standards, led to developing two distinct types of data specifications. The first type, 
reusable, context independent specifications, defines the building blocks of the standard. The 
second type, application-context-dependent specifications (application protocols) is developed to 
satisfy clearly defined industrial information requirements. This combination enables avoiding 
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unnecessary duplication of data specifications between application protocols. 
 
SC4 determined that computer-sensible standards specifications were necessary to facilitate 
reliability and efficiency. The expression of STEP data constructs through a formal data definition 
language is necessary (but not sufficient) for unambiguous definition of data. 
 
7.3.1.1  Components of ISO 10303 
The architecture of STEP is intended to support the development of standards for product data 
exchange and product data sharing. The requirements and concepts in the preceding section have 
contributed to the evolution of the architecture over the past decade. The architectural components 
of STEP are reflected in the decomposition of the standard into several series of parts. The STEP 
document composition was developed at the June 1989 meeting of ISO TC184/SC4/WG1 as a 
series of parts. Each part series contains one or more types of ISO 10303 parts. Figure 7.1 
provides an overview of the structure of the STEP documentation. 
 
[Insert Figure 7.1 here] 
 
The following describes each of the structural components and functional aspects as an overview 
of the STEP architecture. 
 
Description Methods : The first major architectural component is the description method series of 
STEP parts. Description methods are common mechanisms for specifying the data constructs of 
STEP. Description methods include the formal data specification language developed for STEP, 
known as EXPRESS (10303-11, 2004). Other description methods include a graphical form of 
EXPRESS, a form for instantiating EXPRESS models, and a mapping language for EXPRESS. 
 
Implementation Methods : The second major architectural component of STEP is the 
implementation method series of 10303 parts. Implementation methods are standard 
implementation techniques for the information structures specified by the only STEP data 
specifications intended for implementation, application protocols. Each STEP implementation 
method defines the way in which the data constructs specified using STEP description methods 
are mapped to that implementation method. This series includes the physical file exchange 
structure (10303-21, 1994), the standard data access interface (10303-22, 1998), and its language 
bindings (10303-23, 2000), (10303-24, 2001), (10303-26, 1997). Implementation methods are 
standardized in the ISO 10303-20 series of parts.  
 
Conformance Testing : The third major architectural component of STEP is in support of 
conformance testing. Conformance testing is covered by two series of 10303 parts: conformance 
testing methodology and framework, and abstract test suites. The conformance testing 
methodology and framework series of 10303 parts provide an explicit framework for conformance 
and other types of testing as an integral part of the standard. This methodology describes how 
testing of implementations of various STEP parts is accomplished.  
 
Data Specifications : The final major component of the STEP architecture is the data 
specifications (see Figure 7.2). There are four part series of data specifications in the STEP 
documentation structure, though conceptually there are three primary types of data specifications: 
integrated resources, application protocols, and application interpreted constructs. All of the data 
specifications are documented using the description methods.  
 
[Insert Figure 7.2 here] 
 
** Integrated Resources : The integrated resources constitute a single, conceptual model for 
product data. The constructs within the integrated resources are the basic semantic elements used 
for the description of any product at any stage of the product lifecycle. Although the integrated 
resources are used as the basis for developing application protocols, they are not intended for 
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direct implementation. They define reusable components intended to be combined and refined to 
meet a specific need. The integrated resources comprise two series of parts, the integrated generic 
resources and the integrated application resources. The two series have similar function and form: 
they are the application, context-independent standard data specifications that support the 
consistent development of application protocols across many application contexts.  
 
** Application Protocols : Application protocols (APs) are the implementable data specifications 
of STEP. APs include an EXPRESS information model that satisfies the specific product data 
needs of a given application context. APs may be implemented using one or more of the 
implementation methods. They are the central component of the STEP architecture, and the STEP 
architecture is designed primarily to support and facilitate developing APs. Many of the 
components of an application protocol are intended to document the application domain in 
application specific terminology. Application protocols are standardized in the ISO 10303-200 
series of parts. 
 
** Application Interpreted Constructs : Application interpreted constructs (AICs) are data 
specifications that satisfy a specific product data need that arises in more than one application 
context. An application interpreted construct specifies the data structures and semantics that are 
used to exchange product data common to two or more application protocols. Application 
protocols with similar information requirements are compared semantically to determine 
functional equivalence that, if present, leads to specifying that functional equivalence within a 
standardized AIC. This AIC would then be used by both application protocols and available for 
future APs to use as well. STEP has a requirement for interoperability between processors that 
share common information requirements. A necessary condition for satisfying this requirement is 
a common data specification. Application interpreted constructs provide this capability. 
Application interpreted constructs are standardized in the ISO 10303-500 series of parts. 
 
Since a few years, a new concept, called “common resources” has appeared within the STEP 
community. This concept is aimed at maximising the re-use of already existing elements, either 
directly within the data specifications, or by means of the development of “application modules” : 
see Figures 7.3, 7.4 and 7.5 for further information about the components of the standard. 
 
[Insert Figures 7.3, 7.4, 17.5 here] 
 
7.3.2 ISO 13584 P-LIB 
 
7.3.2.1 Purpose 
ISO 13584 (13584-1, 1999) specifies the structure of a library system which provides an 
unambiguous representation and exchange of computer interpretable parts library information. 
The data held in the library are a description that enables the library system to generate various 
representations of the parts held in the library. The structure is independent of any particular 
computer system and permits any kind of part representation. The structure will enable consistent 
implementations to be made across multiple applications and systems.   
ISO 13584 does not specify the content of a supplier library. The content of a supplier library is 
the responsibility of the library data supplier. The library management system used in the 
implementation of the structure defined in ISO 13584, and any interface between this system and 
a user of the system is the responsibility of the library management system vendor and is not 
specified in ISO 13584. 
 
7.3.2.2 Components of a Library System 
The components which form a neutral library system may be split into a number of functional 
areas which are illustrated in Figure 7.6. 
 
[Insert Figure 7.6 here] 
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User to computer system communication : The interface between the user and his computer 
system is not defined in ISO 13584.  This would be application dependent and form part of the 
user interface supplied by a vendor as part of a computer system. 
 
Interface to External Systems : The interface between a library system compliant with ISO 13584 
and other software systems are :  
a library Interrogation Interface : not defined in ISO 13584 but would be expected to provide 
facilities to select parts from the library and to define the orientation, position and representation 
category of the part selected ;  
a representation transmission interface, enabling the library system to send parts representations to 
the user computer system ;  
an input interface for library data, enabling the integration of supplier libraries within a library 
system.  
 
7.3.2.3 Internal Structure of a Library System 
A Library system consists of a Dictionary, Library Management System and Library Content as 
shown in Figure 7.7. The standard defines these modules by the requirements placed upon their 
functional behaviour.  ISO 13584 does not standardise their implementation. 
 
[Insert Figure 7.7 here] 
 
- Dictionary : consisting in a set of entries associated with a human-readable and computer-
sensible representation of the meaning associated with each entry. The dictionary may be accessed 
by the user and referenced from library data. The Dictionary provides a referencing mechanism 
between library data obtained from different suppliers and enables the user to obtain an 
understandable view of the parts held in the library.  The dictionary structure is specified in ISO 
13584-42 (13584-42, 1998). A supplier library may contain only dictionary entries. These entries 
provide computer-referable identifiers for the concepts involved in some application domain. 
 
- Library Management System : software system that enables the end user of the library to use the 
content of an integrated library and to load data into that library. The Library Management System 
is not standardised within ISO 13584. 
 
- Library content : Library data are structured into classes in accordance with the object oriented 
paradigm.  Three kinds of classes are considered in ISO 13584.  The contents of the three kinds of 
classes may be exchanged using the structure and exchange format specified in P-LIB. 
General model classes enable library data suppliers to provide the definition of a collection of 
cognate parts considered as a part family. Functional model classes enable library data suppliers to 
provide various representations (e.g. geometric, schematics, procurement data etc.) for these 
collections of cognate parts. Functional view classes enable the specification of the kind of 
representation provided in the different functional model classes. Some functional view classes 
are standardised in the view exchange protocol series of ISO 13584. A library data supplier may 
also provide the definition of their own functional view class. These three kinds of classes are 
illustrated in Figure 7.8. 
 
[Insert Figure 7.8 here] 
 
When a library consists only of a dictionary, it only defines the concept associated with each class 
and with the properties of each class. When a library also contains a library content, this content 
defines the set of instances contained by each defined class.  
 
When the user CAD system is compliant with an ISO 10303 STEP application protocol(s), the 
provisions contained in ISO 13584 ensure that it is possible from a library content to generate a 
functional view that is compliant with an ISO 10303 application protocol. 
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7.3.2.4 Fundamental Principles of the standard 
ISO 13584 separates the representation of information held in a parts library from the 
implementation methods used in data exchange. The standard makes use of a formal data 
specification language, EXPRESS, to specify information about the structure of a library. ISO 
13584 separates information about the structure of a parts library from the information about 
different representations of each part or family of parts in the library. ISO 13584 permits 
information about part representation to be specified by different standards, and includes 
mechanisms which enable references to  such  descriptions (Pierra et al. 1998), (Pierra et al. 
2004). 
 
7.3.2.5 Structure of the ISO 13584 series of parts 
ISO 13584 is divided into series of parts, each with a unique function. Each  series may have one 
or more parts. The series are listed below with their numbering scheme : 
Conceptual Description  - Parts 10 to 19 
Logical resources   -  Parts 20 to 29 
Implementation resources -  Parts 30 to 39 
Description Methodology  -  Parts 40 to 49 
Conformance Testing  -  Parts 50 to 59 
View Exchange Protocol -  Parts 101 to 199 
Standardised content  -  Parts 500 to 599 
 
- Conceptual descriptions : they define the global conceptual framework and mechanisms 
developed to allow the portability of multi-supplier and multi-representation parts libraries, for 
exchanging and for updating. They present a problem domain analysis of the universe of 
discourse. They describe the concepts and choices made in the formulation of ISO 13584. The 
division of the whole task to be performed into a number of logical tasks that may be defined as a 
separate part of ISO 13584 is accomplished in the conceptual description series of parts.  
 
- Logical resources : The information model of parts library is provided by a set of resources. 
Each resource is comprised of a set of data descriptions in EXPRESS, known as resource 
constructs. One set may be dependent on other sets for its definition. Some resources constructs 
from ISO 10303 may be used to define ISO 13584 resources constructs. All the ISO 13584 
resource constructs are defined in one part of the logical resources series. These resources may be 
used, but not modified, in a view exchange protocol. 
 
- Implementation resources : Each representation category may require a representation 
transmission interface to be implemented on a receiving CAD system to be able to interpret part 
models and to generate part views. The implementation resources specify the standardised 
representation transmission interfaces which may be referenced by a view exchange protocol. 
Each part of this series either specifies an interface, with the requirements for its implementation, 
or specifies the requirements for the implementation of one interface specified in other Standards. 
 
- Description methodology : providing rules and guidelines for library data suppliers, who may be 
standardisation organisations, part suppliers or functional model suppliers. These rules are 
intended to ensure consistency of a user Library. They are mandatory for the standardisation 
committees, in charge of specifying standardised dictionary data. They provide optional 
guidelines for part suppliers or functional model suppliers. 
 
- Conformance testing : providing test cases and a set of requirements that any implementation 
shall meet before being accepted as conforming to this Standard. 
 
- View exchange protocol : specifying one set of requirements for the exchange of one 
representation category of parts. Several view exchange protocols may refer to the same 
representation category. A view exchange protocol may introduce different options that may be 
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selected by an implementation. The options are termed conformance classes. In this case the 
requirements of the view exchange protocol are specified separately for each conformance class. 
 
- Standardised content : It is intended to progressively define standardised dictionary entries 
which may be referenced by supplier libraries. This work will be done inside different 
standardisation committees following the methodology specified in the description methodology 
series of parts of ISO 13584. The parts of the standardised content specify the standardised 
dictionary entries corresponding to various application areas. 
 
7.3.2.6 Use of library parts in product data 
An ISO 13584 conforming exchange context provides for the exchange of library data intended to 
be stored in a user library. An ISO 10303 STEP conforming exchange context provides for the 
exchange of product data. 
 
Three levels of interactions have been identified between these two levels of exchange. 
 
- Level 1 : All information about a part generated in System A will be transferred to System B by 
means of ISO 10303 (see Figure 7.9). 
 
[Insert Figure 7.9 here] 
 
- Level 2 : Only that information is transferred from System A to System B, which is necessary to 
generate the same part from a Library 2 of the receiving System B at the required position and 
orientation. Library 1 and Library 2 both contain all the information about the part (see Figure 
7.10). 
 
[Insert Figure 7.10 here] 
 
- Level 3: That information is transferred from System A to System B which is necessary to 
generate the same part information on the receiving System B without any assumption about the 
content of Library 2. This means that the transferred data also contains a subset of Library 1 (see 
Figure 7.11). 
 
[Insert Figure 7.11 here] 
 
The information models specified in ISO 13584 are intended to enable these three levels of 
interaction. 
 
7.3.3 ISO 18629 : Process Specification Language : PSL 
ISO 18629 is the newest in the family of standards aimed at facilitating interoperability for 
industrial data integration (of products and processes) in industrial applications in TC 184. 
Standardised within a joint committee, ISO TC 184 SC4/SC5, PSL provides a generic language 
for process specifications applicable to a broad range of specific process representations in 
manufacturing and other applications. PSL is an ontology for discrete processes written in the 
Knowledge Interchange Format (KIF) (Genesereth and Fikes, 1992) itself an ISO candidate in 
ISO/JTC1, (Common Logic, 2004). Each concept in the PSL ontology is specified with a set of 
definitions, relations, and axioms all formally expressed in KIF. Relations specify types of links 
between definitions or elements of definitions ; axioms constrain the use of these elements. In 
addition, the PSL ontology is based on set theory, first order logic, and situation calculus 
(Etchemendy 1992). Because of this reliance on theories, every element in the PSL language can 
be proven for consistency and completeness (Gruninger 2003). At the time of this writing, 
approximately half of the PSL definitions, relations and axioms have been proven to be consistent 
with the base theories.   
 
PSL is an international standard for providing semantics to the computer-interpretable exchange 
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of information related to manufacturing and other discrete processes. Taken together, all the parts 
contained in PSL provide a language for describing processes throughout the entire production 
within the same industrial company or across several industrial sectors or companies, 
independently from any particular representation model. The nature of this language makes it 
suitable for sharing process information during all the stages of production. The process 
representations used by engineering and business software applications are influenced by the 
specific needs and objectives of the applications. The use of these representation models varies 
from one application to another, and are often implicit in the implementation of a particular 
application. One of the manufacturing models on which the PSL ontology is built is provided by 
the information models of the ISO 15531 MANDATE standard (standardisation of manufacturing 
management information) (Cutting-Decelle et al., 2000-1), particularly for resource management.  
 
A major purpose of PSL is to enable the interoperability of processes between software 
applications that utilise different process models and process representations. As a result of 
implementing process interoperability, economies of scale are made in the integration of 
manufacturing applications. 
 
All parts in ISO 18629 are independent of any specific process representation or model used in a 
given application. Collectively, they provide a structural framework for interoperability. PSL 
describes what elements should constitute interoperable systems, but not how a specific 
application implements these elements.  The purpose is not to enforce uniformity in process 
representations. As objectives and design of software applications vary the implementation of 
interoperability in a application must necessarily be influenced by the particular objectives and 
processes of each specific application.  
 
7.3.3.1. Architecture and content of ISO 18629 
PSL (ISO IS 18629-1, 2004) is organized in a series of parts using a numbering system consistent 
with that adopted for the other standards developed within ISO TC184/SC4. PSL contains Core 
theories (Parts 1x), External Mappings (Parts 2x), and definitional extensions (Parts 4x). This 
discussion focuses on Parts 1x and 4x ; these parts contain the bulk of ISO 18629, including 
formal theories and the extensions that model concepts found in applications. Parts 1x are the 
foundation of the ontology, Parts 4x contain the concepts useful for modeling applications and 
their implementation.  Table 7.1 presents the organization of ISO 18629. Except noted otherwise, 
PSL version 2.2 is presented. 
 
[Insert Table 7.1 here] 
 
- Core theories (Parts 1x) :  
Core Theories include the PSL-Core, the Outer-Core, Duration and Ordering theories, Resource 
theories, and Actor and Agent theories.  The core theories are contained in the parts 1x and based 
on first-order logic.  They model basic entities necessary for building the PSL extensions.  The 
PSL Core and Core Theories pose primitive concepts (those with no definition), function symbols, 
individual constants,  
and a set of axioms written in the language of PSL.  Table 7.2 illustrates the primitives found in 
the PSL Core.  These primitives and all the definitions in PSL are written in KIF for computer 
interoperability but the KIF writing is not shown here for the sake of readability.  For KIF 
sentences expressing these relations and functions the reader is referred to the PSL Web site. 
 
[Insert Table 7.2 here] 
 
Core theories are required to formally prove that extensions are consistent with each other, and 
with the core theories. The core theories are at the root of the PSL ontology against which every 
item that claims to be PSL compliant must be tested for consistency. They are a unique feature of 
PSL as no other standard in SC4 lends itself to formal, logic-based proof.  Figure 7.12 illustrates 
concepts in the PSL Outer Core and their dependencies.  
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[Insert Figure 7.12 here] 
 
Figure 7.13 extends Figure 7.12 to focuses on Duration, Ordering, and Resource Requirements 
theories. 
 
[Insert Figure 7.13 here] 
 
Domain-specific Definitional Extensions (Parts 4x) :  The extensions to the Core and Outer-core 
are used to represent the actual processes in an application. All terms in the extensions are given 
definitions using the set of primitive concepts axiomatized in the core theories. This ensures that 
definitions are consistent with PSL. A software application will typically use the concepts defined 
in the extensions, rather than the concepts in the Core and Outer core, which are necessary to 
define the extensions but have little expressivity.     
 
In Figure 7.14, a definitional extension (Parts 4x) is represented as a slice of the pie. It specifies 
concepts and definitions for all kinds of (practical) concepts and are written using the Core, Outer 
core, and theories.  Some definitional extensions also use concepts defined in other extensions. 
Figure 7.14 shows that a concept belonging to an extension (blue triangle) is specified using 
concepts of the Core, Outer Core, and another extension. But the Core and Outer Core alone are 
not sufficient to represent meaningfully an application’s semantics for the purpose of 
interoperability. 
 
[Insert Figure 7.14 here] 
 
Table 7.3 gives examples of definitional extensions, and the core theories each extension relies 
upon.  It is to be noted that the organization of the Extensions into Activity Extensions, Temporal 
Extensions, etc… is here for readability and ease of use of the standard.  The organization itself 
does not affect the concepts in PSL: for instance a concept may be moved from one extension to 
another without affecting the PSL ontology or the concepts defined in the extension.  In other 
words, to be a valid part of the PSL ontology extensions do not need to belong to one or another 
of the categories in the left column.  However, each concept must conform to the Core Theories in 
the middle column.  
 
[Insert Table 7.3 here] 
 
7.3.3.2. Interoperability with PSL and conformance to the standard 
The main purpose of PSL is to establish a computer language for exchanging processes between 
software applications such as CAD, and project design software. As a specification language, PSL 
can be considered as a specification tool of the information and knowledge related to 
manufacturing management, as modelled by the MANDATE standard (ISO IS 15531-1, 2002). 
 
7.3.3.2.1 The challenges of interoperability 
The obstacles to interoperability of data regarding syntax of two applications are common, and 
usually dealt with parsers. Obstacles due to semantic problems, i.e. problems about the “meaning” 
of a software object or entity are less visible. Lack of semantic reconciliation may introduce errors 
even if syntax mapping is correct. Without a standard like PSL, the semantic mapping may be 
performed in an ad hoc manner by a developer. 
 
Figure 7.15 presents an example from the transportation industry, where a truck is represented as a 
vehicle, a mobile resource, or a truck. Delivery mechanisms not represented here may also include 
transportation for some applications.  If there is no interoperability of processes, applications that 
use this terminology may be incompatible. This leads to re-inputting entries manually in the 
application chain. In the example in Figure 7.16, Material designates two different things: a 
Resource and a Work in Progress and a Resource.  Resource a Material, a Machine-tool, and a 
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Stock.   
 
[Insert Figures 7.15 and 7.16 here] 
 
Syntactic interoperability does not resolve these conflicts, and decisions as to which concept in 
Application A matches a concept in Application B is left to the developer of parsers.  The benefit 
of PSL is to formally encode each application’s concept or vocabulary in a rigorous representation 
language.  When two applications sharing data are expressed in PSL, the conflicts and semantic 
gaps are highlighted and a resolution is proposed.  In essence, expressing the concepts of an 
application with PSL produces a detailed analysis of processes, and on this basis two applications 
can be reconciled. 
 
7.3.3.2.2 Interoperability and conformance 
From the point of view of ISO 18629 two applications can inter-operate  if they are conformant 
with the same set of ISO 18629 extensions.  Software applications that claim conformance to PSL 
will: 
specify processes from their application into the KIF language.  This is the set of terms used by 
the application that refer either to processes in the application or relations among these processes. 
provide translation definitions between their processes represented in KIF and PSL definitions. 
implement syntactic translators between their applications and PSL process descriptions. 
Another requirements not discussed in this chapter is that there exists a grammar using the same 
representation as PSL grammar for the application processes, using the Backur Naus form. 
 
In practice, two applications do not exchange data about all their processes in one exchange.  Only 
one or a set of processes at one time will exchange data.  After identifying the concept to be 
exchanged, the steps outlined in the standard can be followed as : 
 the processes are defined and expressed using KIF syntax  
 the concepts contained in the processes (their names, relationship to other processes, conditional 
expressions) are further defined. In other words, the application’s entities are given KIF 
definitions. 
 a translation is provided between the application’s entities definition and PSL definitions.   
 At this point in the procedure, Applications A and B’s processes have been expressed using PSL 
terms and KIF syntax. Each has a one-to-one correspondence between their process definition and 
a PSL definition. On this basis, data for the relevant process can be exchanged.     
 
Following this procedure does not allow a software application to claim conformance to PSL 
according to ISO 18629, but it is sufficient for process exchange with another application. To this 
purpose, the National Institute of Standards has implemented a “question wizard” (PSL, Wizard) 
to facilitate the expression of any process with PSL definitions and in KIF syntax. A user specifies 
a process in details by answering questions and checking boxes for their process. The wizard 
returns a definition for the process using PSL.   
 
7.3.3.2.3 User defined extensions 
User defined extensions of PSL are extensions that introduce new primitive concepts. Typically, 
current extensions are sufficiently rich to express processes in existing software applications. 
However, the case where an application concept is not represented may arise.  In this case, PSL 
can be extended to include a new extension by expressing it using the PSL Core, Outer Core, and 
definitions in existing extensions. The axioms in any extension that introduces new primitives 
must be consistent with the axioms of PSL-Core. User-defined extensions are needed when PSL is 
applied to domains that have not been yet dealt with in the extensions.   
 
Research work has been done or is currently on-going, showing examples or interoperability 
among software tools using PSL, notably at the University of Stanford (CIFE) (Law 2001) (Cheng 
et al., 2003), and at the University of Loughborough (Cutting-Decelle et al., 2000), (Cutting-
Decelle et al., 2001), (Cutting-Decelle et al., 2002), (Cutting-Decelle et al., 2004-2), (Tesfagaber 
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et al., 2002). We present below an example of process exchange in construction using PSL. 
 
7.3.3.2.4   Example of process exchange in construction using PSL 
- Scenario : to illustrate interoperability for the construction domain, the following scenario has 
been designed: 
 
The design and construction of an office building includes an exchange of information and data 
with the purpose of fitting a metal door to a metal wall frame.  Conception, estimation of costs, 
and project planning must be studied for this scenario.  Software applications used for this study 
include a design application using AutoCAD, a cost simulation software, and a project planner 
using MS-Project for the planning phase. A related scenario would be the exchange of processes 
for integrating a new supplier.  Figure 7.17 illustrates this scenario. The process exchange is 
described in details for the AutoCAD and MS Project applications (Tesfagaber 2004). 
 
[Insert Figure 7.17 here] 
 
- Process interchange with PSL.   
 
First the Architectural Design File is written using the syntax and terminology of the AutoCAD 
application.  Second this file must be parsed to a KIF file, still using AutoCAD’s terms and 
relations. This syntax translation may be executed with a parser between KIF and the AutoCAD’s 
syntax. Thus an ontology for the design application is built.  Third, the AutoCAD application’s 
ontology is semantically translated into PSL terminology. This step is usually done manually or 
using the 20-question wizard developed at NIST for that purpose. This involves in-depth 
understanding of the processes in the AutoCAD application and may require consulting the 
documentation.  It also introduces as many constraints and relations as possible on the AutoCAD 
terminology.  Constraints and relations are taken from PSL and necessary for specifying in details 
what the AutoCAD terminology means.  The result is a file where the AutoCAD is expressed 
using PSL concepts under specific conditions.   
 
In parallel, the same process is performed for the process planning application using MS-Project 
terminology.  Once both applications have been expressed in KIF and specified using PSL 
concepts, a inverse file containing constrained PSL concepts equivalent to the MS-Project 
application is created.  Using these two files (Auto-CAD using PSL concepts and PSL concepts 
corresponding to MS-Project) process data can be exchanged under explicit conditions. 
 
Below is the PSL translation of a process named door-assembly in AutoCAD developed using the 
20-question wizard (Figure 7.18). This process is an activity. Its initiation depends on the state of 
other activities prior to this one (markov pre-conditions), but not on time or duration allocated to 
the activity.  For instance, “make door frame” may be required for door frame assembly to occur.  
The result of the process is affected by the initial conditions existing prior to the process but not 
the duration.  All occurrences of the “door assembly” activity have the same effect and are also 
time-independent.  
 
[Insert Figure 7.18 here] 
 
The specification of an MS task using PSL is given below. This specification intends to verify if a 
door-assembly process in AutoCAD can be equated to a task in MS project. If it was, only a 
syntactic parser for values of variables between AutoCAD and MS-project is necessary in 
information exchange. If not, the development of translation software may be assisted by providing 
an in-depth analysis of semantics and resolve the discrepancies using PSL. 
 
In this example (Figure 7.19), a task is a constrained activity that cannot occur unless other activities 
have previously occurred: it depends on the state of another activity. This is similar to AutoCAD.  
However, an MS-task may also be bound by starting time, duration of the activity, or a combination 
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of these with a state pre-condition. Therefore, if a parser is designed to translate from the AutoCAD 
file for door-assembly to a task in MS project, the parser must take into account the fact that time 
does not exist for the AutoCAD process so that the AutoCAD process is not equivalent to the MS 
task. In other words the parser can only partially input a new task based on the information provided 
by AutoCAD. Semantic encoding using PSL has here highlighted a potential source of error for 
automatic translators between two applications.  In this case, it is determined that the AutoCAD 
process of door-assembly can be translated to an MS task constrained by the occurrence of activities, 
but additional constraints regarding time also exist. One possible solution to this obstacle is to enter 
by hand the values for time constraints, and duration.   
 
[Insert Figure 7.19 here] 
 
User defined extensions. 
User defined extensions of PSL are extensions that introduce new primitive concepts, for instance 
for a domain where PSL has not been used before. Typically, current extensions and existing 
processes are sufficiently rich in PSL to express existing software applications. However, the case 
where an application concept is not represented may arise.  In this case, PSL can be extended to 
include a new concept or extension by expressing it using the PSL Core, Outer Core, and 
definitions in existing extensions. The axioms in any extension that introduces new primitives 
must be consistent with the axioms of PSL-Core.  
 
7.4. DE FACTO STANDARD DEVELOPED BY THE INTERNATIONAL ALLIANCE FOR 
INTEROPERABILITY (IAI): INDUCTRY FOUNDATION CLASSES (IFCs) 
 
4.1 The International Alliance for Interoperability (IAI) Community 
The International Alliance for Interoperability (IAI) is an international consortium of regional 
chapters registered and listed as non-for-profit organizations in North America, United Kingdom, 
Germany, France, Scandinavia, Japan, Singapore, Korea and Australia. Currently the IAI has 
about 650 membership organizations world-wide, being construction companies, engineering 
firms, building owners and operators, software companies, and academic institutions. The vision 
of the IAI is : "to provide a universal basis for process improvement and information sharing in 
the construction and facilities management industries.” (IAI 2001) 
 
The vision is supported by the IAI mission statement : "to define, promote and publish the 
Industry Foundation Classes (IFC), a specification for sharing data throughout the project life-
cycle, globally, across disciplines and across technical applications." 
More information about the IAI is available at : http://www.iai-international.org. 
 
7.4.2 The IFCs 
The IFC are a data sharing specification, written in EXPRESS (10303-11, 1994), the dedicated 
formal language developed within the ISO 10303 STEP standard. Content according to IFC is 
currently exchanged between IFC compliant software applications using the Clear text encoding 
of the exchange structure, the STEP physical file (10303-21, 1994). 
 
The scope of the IFC specification is the project life-cycle of construction facilities, including all 
phases as identified by generic process protocols for the construction and facilities management 
industries, such as : Demonstrating the need, Conception of need, Outline feasibility, Substantive 
feasibility study and outline financial authority, Outline conceptual design, Full conceptual design, 
Co-ordinated design, procurement and full financial authority, Production information, 
Construction, Operation and maintenance. 
Development of IFC is guided by versions and releases, which do extend the scope successively. 
The processes supported by the current IFC2x specifications are : Outline conceptual design, Full 
conceptual design, Co-ordinated design, procurement and full financial authority, Production 
information, Construction, Operation and maintenance. 
The target applications to exchange and share information according to IFC2x are : CAD Systems, 
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HVAC design systems, Electrical design systems, Formwork design and scheduling systems, 
Structural analysis systems, Energy simulation systems, Quantity take-off systems, Cost 
estimation systems, Production scheduling systems, Clash-detection systems, Product information 
providers, Steel and Timber frame construction systems, Prefab systems, stand-alone visualisation 
tools and others. 
 
7.4.3 IFC Model Architecture 
 
7.4.3.1 Architecture Principles   
The IFC Model Architecture has been developed using a set of principles governing its 
organization and 
structure. These principles focus on basic requirements and can be summarized as (IAI 2000) : 
To provide a modular structure to the model. 
To provide a framework for sharing information between different disciplines within the AEC/FM 
industry 
To ease the continued maintenance and development of the model. 
To enable information modelers to reuse model components 
To enable software authors to reuse software components 
To facilitate the provision of better upward compatibility between model releases 
 
The IFC Model architecture provides a modular structure for the development of model 
components, the 
'model schemata'. There are four conceptual layers within the architecture, which use a strict 
referencing 
principle. Within each conceptual layer a set of model schemata are defined. 
 
1. The first conceptual layer provides Resource classes used by classes in the higher levels. 
2. The second conceptual layer provides a Core project model. This Core contains the Kernel and 
several Core Extensions. 
3. The third conceptual layer provides a set of modules defining concepts or objects common 
across multiple application types or AEC industry domains. This is the Interoperability layer. 
4. Finally, the fourth and highest layer in the IFC Model is the Domain layer. It provides set of 
modules tailored for specific AEC industry domain or application type. 
 
The architecture operates on a 'gravity principle'. At any layer, a class may reference a class at the 
same or lower layer but may not reference a class from a higher layer. References within the same 
layer must be designed very carefully in order to maintain modularity in the model design. Inter-
domain references at the Domain Models layer must be resolved through 'common concepts' 
defined in the Interoperability layer. If possible, references between modules at the Resource layer 
should be avoided in order to support the goal that each resource module is self-contained. 
However, there are some low level, general purpose resources, such as measurement and 
identification that are referenced by many other resources. 
 
7.4.3.2 Gravity Principle : see Figure 7.20  
1. Resource classes may only reference or use other Resources. 
2. Core classes may reference other Core classes (subject to the limitations listed in 3) and may 
reference classes within the Resource layer without limitations. Core classes may not reference or 
use classes within the Interoperability or Domain layers. 
3. Within the Core layer the 'gravity principle' also applies. Therefore, Kernel classes can be 
referenced or 
used by classes in the Core Extensions but the reverse is not allowed. Kernel classes my not 
reference Core Extension classes. 
4. Interoperability layer classes can reference classes in the Core or Resource layers, but not in the 
Domain layer. 
5. Domain layer classes may reference any class in the Interoperability, Core and Resource layers. 
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[Insert Figure 7.20 here] 
 
7.4.4  IFC Model Architecture Decomposition  
The IFC Model Architecture for IFC 2x consists of the following layers. 
Resource Layer 
Core Layer 
Kernel 
Extensions 
Interoperability Layer 
Domain Layer 
 
7.4.4.1 Resource Layer  
Resources form the lowest layer in IFC Model Architecture and can be used or referenced by 
classes in the other layers. Resources can be characterized as general purpose or low level 
concepts or objects that are independent of application or domain need (that is, they are generally 
rather than specifically useful) but which rely on other classes in the model for their existence. For 
instance, geometry is a widely used resource whose specification is independent of domain. 
However, an object within a domain must be defined before its geometry can exist. 
Exceptions to this characterization include classes from the Utility and Measure Resources that 
are used by other, higher-level resource classes. 
 
7.4.4.2 Core Layer  
The Core forms the next layer in IFC Model Architecture. Classes defined here can be referenced 
and specialized by all classes in the Interoperability and Domain layers. The Core layer provides 
the basic structure of the IFC object model and defines most general concepts that will be 
specialized by higher layers of the IFC object model (Figure 7.21). 
 
[Insert Figure 7.21 here] 
 
The Core includes two levels of generalization : 
 
1. The Kernel : provides all the basic concepts required for IFC models within the scope of the 
current IFC Release. It also determines the model structure and decomposition. Concepts defined 
within the kernel are, necessarily, generalized to a high level. It also includes fundamental 
concepts concerning the provision of objects, relationships, type definitions, attributes and roles. 
The Kernel can be seen as a template model that defines the form in which all other schema within 
the model are developed (including all extension models). Its constructs are very general and are 
not AEC/FM specific, although they will only be used for AEC/FM purposes due to the 
specialization by Core Extensions. The Kernel constructs are a mandatory part of all IFC 
implementations. The Kernel is the foundation of the Core Model. Kernel classes may reference 
classes in the Resource layer but may not reference those in the other parts of the Core or in 
higher-level model layers. 
 
2. Core Extensions : provide extension or specialization of concepts defined in the Kernel. They 
are the first refinement layer for abstract Kernel constructs. More specifically, they extend those 
constructs for use within the AEC/FM industry. Each Core Extension is a specialization of classes 
defined in the Kernel and develops further specialization of classes rooted in the IfcKernel. 
Additionally, primary relationships and roles are also defined within the Core Extensions. A class 
defined within a Core Extension may be used or referenced by classes defined in the 
Interoperability or Domain layers, but not by a class within the Kernel or in the Resource layer. 
References between Core Extensions have to be defined very carefully in a way that allows the 
selection of a singular Core Extension without destroying data integrity by invalid external 
references. 
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Goals for Core layer design are : 
 
- definition of those concepts that are common to all parts of the model and that later can be 
refined and used by various interoperability and domain models 
- pre-harmonization of domain models by providing the set of common concepts. 
- stable definition of the object model foundation to support upgrade compatible IFC Releases 
 
7.4.4.3 Interoperability Layer  
The main goal in the design of Interoperability Layer is the provision of schemata that define 
concepts (or classes) common to two or more domain models. These schemata enable 
interoperability between different domain models. It is at this layer that the idea of a ‘plug-in’ 
model approach emerges. It is through the schemata defined at the Interoperability Layer that 
multiple domain models can be plugged into the common IFC Core. The 'plug-in' approach also 
supports outsourcing of the development of domain models. 
 
7.4.4.4 Domain Layer  
Domain Models provide further model detail within the scope requirements for an AEC/FM 
domain process or a type of application. Each is a separate model that may use or reference any 
class defined in the Core and Independent Resource layers. Examples of Domain Models are 
Architecture, HVAC, FM, Structural Engineering etc. An important purpose of Domain Models is 
to provide the ‘leaf node’ classes that enable information from external property sets to be 
attached appropriately. 
 
7.4.5  Connecting External Models to the IFC Model 
Fully harmonized IFC Domain Models are directly connected the Core definitions. Domain 
Models that are not fully harmonized have to provide appropriate connection to relevant IFC class 
definitions in order to use the IFC model framework. Such models may be developed according to 
different technical architectures and methodologies but might need to be used in conjunction with 
the IFC model at some point. 
The means of achieving this is through the use of a connection mechanism. The main 
requirements for connection are the facilitation of : 
 
1. Connection of externally developed, non harmonized, Domain Models via a connection that 
provides a mapping mechanism down to Core and Interoperability definitions. The definition of 
the connection is in the responsibility of the Domain Model developer and is part of the Domain 
Model Layer. 
2. Establish an inter-domain exchange mechanism above the Core to enable interoperability across 
domains. This includes a container mechanism to package information. Therefore a connection is 
used where the definition of the connection is the responsibility of all Domain Models that share 
its use. 
 
Connections are based on Core Extension definitions and enhance those Core Extension 
definitions. Those enhancements provide common concepts for all Domain Models that might 
further refine these concepts. As an example, the Building Element provides the definition of a 
common wall, whereas the Architectural Domain Model will enhance this common wall with its 
private subtypes and type definitions. A connection that is used by several Domain Models 
therefore provides a level of interoperability through shared connection definitions. 
Non-IFC harmonized models can be connected to the IFC Core Model through a specifically 
defined mapping. For specific high-level inter-domain exchange that cannot be satisfied by 
common definitions in the Core, connection through mapping may provide a specific inter-domain 
exchange capability. 
 
7.4.6 Overall Architecture 
The following diagram (Figure 7.22) shows the complete set of IFC 2x model schema organized 
according to the layer at which they exist. 
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[Insert Figure 7.22 here] 
 
Note that all schema are named in a manner that enables identification of their architecture layer : 
 
Schema at the resource layer are suffixed with the term ‘Resource’ 
Schema at the core extension layer are suffixed with the term ‘Extension’ (other than the Kernel 
schema which is considered to be a special case) 
Schema at the interoperability layer are suffixed with the term ‘Elements’ 
Schema at the domain layer are suffixed with the term ‘Domain’ 
 
Industry Foundations Classes IFC2x have been endorsed by the ISO organisation as the ISO/PAS 
16793 in November 2002 (IAI 2001). 
 
7.5. CONCLUSION: CONTRIBUTION OF DIFFERENT STANDARDS TO 
INTEROPERABILITY IN CONSTRUCTION 
 
We have shown to what extent standards-based approaches can be helpful to facilitate information 
sharing and interoperability among software applications commonly used in manufacturing, and in 
manufacturing management. Most of the time, technical terms handled by those applications look 
similar, or, even worse, are exactly the same – however their meaning is different.  
 
In the four standards described above, technical terms are established more or less on the same 
“construction-flavoured” vocabulary, but are very different,with multiple interpretations of  the 
same terms in each standard.  Given its properties, and its structure, ISO 18629 PSL can be 
considered as a powerful interoperability “tool” for the information systems of the enterprises.  It 
introduces economy of scales – each application only needs to provide interoperability to PSL 
once for information exchange (Figures 7.23 and 7.24).  If an application changes, it is up to the 
developers of this application to provide new translations to PSL.  Thus only one application in 
the chain of inter-operation is affected and not the others.   
 
[Insert Figures 7.23 and 7.24 here] 
 
However, implementation of standards is non-trivial and costly.  It is not until the use and 
implementation of these standards in a particular industry has reached “critical mass” that costs 
will decrease.  STEP already has made great strides in this direction.  The construction industry 
may benefit from the lessons learned in other domains, particularly for Concurrent engineering 
based approaches of construction projects (see chapter 4).   
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