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Abstract. Linked Science is the practice of inter-connecting scientific assets by publishing, sharing and 
linking scientific data and processes in end-to-end loosely coupled workflows that allow the sharing and 
re-use of scientific data. Much of this data does not live in the cloud or on the Web, but rather in multi-
institutional data centers that provide tools and add value through quality assurance, validation, 
curation, dissemination, and analysis of the data. In this paper, we make the case for the use of scientific 
scenarios in Linked Science. We propose a scenario in river-channel transport that requires 
biogeochemical experimental data and global climate-simulation model data from many sources. We 
focus on the use of ontologies—formal machine-readable descriptions of the domain—to facilitate 
search and discovery of this data. Mercury, developed at Oak Ridge National Laboratory, is a tool for 
distributed metadata harvesting, search and retrieval. Mercury currently provides uniform access to 
more than 100,000 metadata records; 30,000 scientists use it each month. We augmented search in 
Mercury with ontologies, such as the ontologies in the Semantic Web for Earth and Environmental 
Terminology (SWEET) collection by prototyping a component that provides access to the ontology 
terms from Mercury. We evaluate the coverage of SWEET for the ORNL Distributed Active Archive 
Center (ORNL DAAC). 

Keywords: Linked Science, ontologies, BioPortal, semantic search, climate change, data discovery 

	   	  



2	  
	  

1.  Linked Science: requirements and examples 

The ways in which scientists conduct 
research in earth sciences, chemistry, 
biology, geography, ecology, sociology, and 
other scientific fields is changing 
significantly. Often, the most challenging 
research questions require them to 
understand and use practices, data, methods 
and software from many scientific 
disciplines. Linked Science is the practice of 
inter-connecting scientific assets by 
publishing, sharing and linking scientific 
data and processes in end-to-end loosely 
coupled workflows that allow the sharing 
and re-use of scientific data (Kauppinen and 
de Espindola, 2011, Kauppinen et al., 2011, 
Kauppinen et al., 2012). Linked Science 
requires new ways of integrating and 
aggregating structured and unstructured data 
and information derived from physical, 
chemical, biological, sociological, and other 
traditional fields of scientific study. Linked 
Science is grounded in interdisciplinary 
research and highlights the reasons why 
such research is arduous: a scientist who is 
already an expert in a domain must become 
fluent in the language and practices of 
another domain in order to start addressing a 
scientific question. Some examples of 
Linked Science, such as DataONE, put a 
special emphasis on working from scientific 
scenarios.  

	  
Data Observation Network for Earth 

(DataONE) is the foundation of 
new innovative environmental science 
through a distributed framework 
and sustainable cyber-infrastructure that 
meets the needs of science and society for 
open, persistent, robust, and secure access 
to well-described and easily discovered 
Earth observational data (Michener et al., 

2012). The goal of DataONE is to ensure the 
preservation, access, use and reuse of multi-
scale, multi-discipline, and multi-national 
science data via cyber-
infrastucture elements and a broad 
education and outreach program.  DataONE 
researchers have developed a number of 
scientific scenarios that require such multi-
disciplinary integration of data.  In 
DataONE’s initial efforts at using data to 
address scientific research projects, 
scientists used bird observations and a 
variety of environmental data layers to 
estimate changes in the occurrence of bird 
species seasonally in the conterminous U.S. 
(Fink et al., 2010, Kelling et al., In press).  

 
Gil and colleagues (Gil et al., 2012) 

propose another Linked Science example 
and developed a scenario focused on 
understanding the carbon cycle in water that 
requires integrating data and analyses by 
scientists studying river, lake, ocean, and 
coastal ecosystems. Here, a semantic 
framework allows collective metadata 
editing and acknowledgement of scientists’ 
contributions around the scenarios.  The 
Semantic Water Quality Portal (Patton et al., 
2011), also an example of Linked Science, 
integrates domain data related to water 
quality from several agencies, including the 
US Geological Survey (USGS), the 
Environmental Protection Agency (EPA) 
and multiple regulation ontologies. 
Ontologies enable detection of pollution 
events and communities can monitor 
pollution results according to a regulation of 
their choice. 

 
Linked Science relies upon the 

collection, organization, classification, 
storage, discovery, access, transport, 
distribution, sub-setting, aggregation, 
dissemination, and visualization of large, 
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diverse types of data.  Scientists store and 
disseminate data through archives and data 
centers, supported by organizations in 
government, academia, and industry. These 
data centers guarantee data quality and 
reproducible transformation of processes so 
that the credibility of scientific results is 
preserved. This is essential in the study of 
climate change, where results influence 
national and international policy. Data 
centers include experimental, observational, 
and computer-generated data. They provide 
tools and add value through quality 
assurance, validation, curation, 
dissemination, and analysis of the data. 
These data typically cannot be consumed by 
a browser, an audio or video reader, and 
usually require specialized applications that 
these data centers also provide. 
 
Problem Statement 
Discovery and access to this data poses a 
major challenge, one that we describe 
below.  On the Web, with Linked Open 
Data, every resource has a unique identifier.  
By contrast, with Linked Science, uniform 
access to datasets provided by unique 
identifiers is not always available because 
the data does not live in the cloud or on the 
Web, but in multi-institutional data centers.  
Uniform data access would be advantageous 
to searches and for discovering new links 
between datasets and/or scientists.  Globally 
unique identifiers, a unique reference 
number used as an identifier in software and 
on the web, like a Uniform Resource 
Identifier, are gaining some traction but not 
universally used.  Common schemes like the 
Digital Object Identifiers system, a unique 
reference ISO standard, are often linked to 
publications rather than datasets.   Critically, 
each dataset must be accompanied by 
discovery metadata to enable access. 
Metadata must specify which services or 

software can consume the data and where 
they are offered to allow automation of 
processes. In addition, metadata must 
describe the way that the data was 
generated, potential errors, uncertainty or 
variability in the calculations and 
measurements. 
  

Thus, not only we must have a 
vocabulary to describe this extensive 
metadata, but also this vocabulary needs to 
be shared among multiple data providers 
and we must be able to perform automated 
reasoning in order to discover, access, and 
integrate data described by this metadata. 
We investigate the use of formal ontologies 
as such metadata vocabularies. Ontologies 
help with data access as they can provide 
additional keywords for a search. The 
Semantic Web for Earth and Environmental 
Terminology (SWEET) (Raskin and Pan, 
2005) is a mature foundational ontology that 
can provide such terms. For example a 
search on “carbon” in SWEET returns 
“Carbon sequestration,” “carbon footprint,” 
“Dissolved organic carbon concentration 
protocol” and “kartz,” that all can be used 
for new searches. Ontologies define the 
terms in a domain of discourse (shared 
metadata terms in our case), provide 
constraints on the values and define formal 
semantics that enable automated reasoning. 
Furthermore, the World-Wide Web 
Consortium (W3C) has defined OWL, a 
formal language for representing and 
sharing ontologies on the Web, enabling 
scientists to publish and integrate metadata 
using standard Web protocols. One can 
think of an ontology as a taxonomy of terms 
with added rules and relationships that can 
be used by computer algorithms. Ontologies 
and semantic descriptions of the scientific 
data and processes provide the necessary 
objects supporting the production of new 
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knowledge by allowing interoperability of 
the processes, shared annotations and 
integration of the data. 
 
Organization 
This paper makes the following 
contributions: 
−  We propose a scientific scenario in climate 

change that illustrates Linked Science.  
−  We describe the motivation for semantic 

annotations within this scenario.  
−  We present a tool that uses ontologies to 

improve the quality of search across 
heterogeneous big-data resources.  

−  We describe our semantic work in the 
context of Linked Science 

−  We analyze the domain coverage that 
SWEET provides for a large collection of 
datasets.  
The paper is organized as follows. The 

next section describes related work. In 
Section 3, we describe the domain 
application and provide a scientific scenario 
where heterogeneous data sources must be 
collected to perform a scientific 
investigation of climate change for river 
water transport. We characterize the various 
types of datasets available in this domain. In 
section 4 we focus on the design and 
implementation of our system and the 
integration of several open-source 
components to improve data discovery using 
semantics. We also describe a prototype tool 
highlighting the use of ontologies developed 
for this scenario. In Section 5, we present 
the results that we obtained with the 
prototype and we evaluate the ontology 
coverage. In the next section we analyze our 
results and then present our conclusion and 
future directions.  

2. Related work 

Researchers in the Semantic Web 
community have studied semantic search 
and a variety of approaches to it. A recent 
survey (Tran et al., 2011) presented a 
general model for semantic search and 
identified different types of semantic search. 
In general, there are two key approaches. In 
one, the (linked) data is represented in RDF 
or OWL and the search engine provides 
access to a collection of such data, either 
through keyword search or through 
SPARQL (e.g., SWSE (Hogan et al., 2011), 
or Sindice (Tummarello et al., 2007)). Uren 
and colleagues provide a survey of this type 
of semantic-search engines (Uren et al., 
2007). Our datasets and their metadata are 
not represented in RDF or OWL. The 
second class of semantic-search applications 
are document-retrieval applications that use 
semantics to expand or constrain the user 
query (e.g., (Chu-Carroll et al., 2006, 
Castells et al., 2007)). The query expansion 
method (Navigli and Velardi, 2003) uses 
ontology terms related to terms of the 
original query as additional search terms. 
Related ontology terms can specify 
synonyms, sub- or super-classes for query 
terms, thus providing additional search 
terms that are not linguistically related to 
query terms. Semantic technologies, such as 
ontologies, help improve search results by 
adding these additional search terms and 
thus potentially increasing the number of 
returned results.  
 

The application that we describe here is 
closer to the second category as we use 
ontologies for query expansion using super-
classes and sub-classes. It provides access to 
heterogeneous collections of structured data, 
but this data is not represented in Semantic 
Web formats, thus does not fall into the first 
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category. At the same time, it uses 
semantics on the “front-end,” augmenting 
the user query, but we use this query 
expansion to access structured data and not 
a set of documents. Thus, to the best of our 
knowledge, the application that we describe 
is unlike many semantic-search applications 
because it uses semantics on the query side, 
provides access to structured data, but not in 
RDF and OWL format.  

 
Kauppinen and colleagues frame the 

challenges of Linked Science in the form of 
an “executable paper” (Kauppinen and de 
Espindola, 2011), with publication of 
validated and well-sourced data as one of 
the key requirements. Contributions to the 
First and Second Linked Science 
workshops 1  (Kauppinen et al., 2011) 
investigated several issues related to Linked 
Science and Linked Data but did not focus 
on semantic searches for structured datasets 
in dedicated archives. Researchers discussed 
the requirements for Linked Science in the 
geo-physical sciences (Mäs et al., 2011); the 
use of rules for interactively mapping data 
sources in databases to ontology and 
generating RDF triples (Knoblock et al., 
2011); the need for trust in the data sources 
with an emphasis on formally describing the 
relationship between data and sources in 
bibliographic resources (McCusker et al., 
2011); challenges in the bioinformatics 
(Vision et al., 2011) and astronomy 
domains. Thus, researchers are actively 
addressing the trends in Linked Science. 
Our effort describes our semantic work in 
the context of Linked Science and is 
complementary to the approaches described 
in these papers. 
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
1 http://linkedscience.org/events/lisc2011/ 
http://linkedscience.org/events/lisc2012/	  

3. Use case scenario and datasets 

Consider the following scenario (Fig. 
1). A hydrologist focuses on validating 
model simulation multi-decadal trends for 
nutrient transport in a river channel within a 
watershed. In this case we are considering 
the Community Climate System Model 
(Gent et al., 2011). This climate model 
simulation of the earth system used to 
investigate climate change has four 
components: land, sea ice, ocean and 
atmosphere. The land component currently 
includes simulations of river flow. Future 
models of the earth system will contain 
biogeochemical species such as nitrogen, 
carbon, and phosphorus compounds (e.g., 
those contained in fertilizers). Changes in 
the chemistry of rivers from two different 
scenarios are particularly relevant to climate 
change. First, biogeochemical species 
resulting from fertilizer use are washed from 
the soil, carried from water streams into 
larger rivers, and eventually end up in 
coastal oceans. Second, deforestation from 
biomass burning also causes changes to the 
chemical composition of the water that 
flows into rivers. The transport of 
biogeochemical species, particularly riverine 
nitrogen, may have an even larger effect: 
these species cause hypoxia (reduction in 
the oxygen concentration in water) and fish 
mortality in the coastal oceans (Doney, 
2010). In order to characterize these effects 
realistically, the hydrologist will need access 
to two types of data, which are generally 
available to earth scientists: (1) 
computational data that record the results of 
computer modeling and simulation; and (2) 
observational data that contain results of 
specific measurements.  
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Getting the data 
In our use case, the computational data 

will include models of river flow and 
transport of biogeochemical species; the 
observational data will describe stream flow, 
water quality, precipitation, air and water 
temperature, sediment data, biogeochemical 
species, and soil moisture. For 
computational-model data, our hydrologist 
can turn to the Earth System Grid 
Federation (ESGF2) gateway at the National 
Center for Atmospheric Research 
(Bernholdt et al., 2005). At the time of this 
writing, it contains 3,384 datasets of 
computational data totaling about 1.3 
Petabytes of data and representing 368 
variables. She will need to know, however, 
that file names in this source attempt to 
reflect variable name, such as “qchanr” 
(river flow), or “qchocnr” (river discharge 
into the ocean). 
 

For observational data, the hydrologist 
can get data from the Gravity Recovery and 
Climate Mission (Tapley et al., 2004) and 
the Tropical Rainfall Measuring Mission 
(Theon, 1993) from the National 
Aeronautics and Space Administration 
(NASA) to validate the outputs of the 
climate model simulation. These datasets 
contain remote sensing imagery for tropical 
precipitation and storage. Ground stream 
flow data is available from the USGS. 
Fertilizer input and water-quality 
measurements may come from the EPA and 
the US Department of Agriculture. 

 
Biogeochemical data is available to the 

hydrologist from the NASA-sponsored 
Distributed Active Archive Center at the 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
2 http://www.earthsystemgrid.org/ 

Oak Ridge National Laboratory 3 (ORNL 
DAAC).  This center holds  about 1,000 
datasets amounting to 2 Terabytes relevant 
to biogeochemical dynamics, ecological 
data, and environmental processes, as well 
as 60 TB of land product data subsets 
(measurements of surface radiance, 
reflectance, emissivity, and temperature) 
from the Moderate Resolution Imaging 
Spectroradiometer (MODIS) Instrument 
aboard the Terra and Aqua satellites.  
 

A scientific user may typically be 
familiar with computational climate 
datasets, such as those found in ESGF, or 
with observational earth and ecological 
science datasets such as those found in the 
ORNL DAAC, but not both. Both types of 
sources currently present their data in 
faceted searches along attributes such as 
Project, Model, Experiment, Product, 
Variable Name, and Ensemble for ESG, and 
Parameter, Sensor, Topic, Project, 
Keywords in the ORNL DAAC. A faceted 
search exposes different views of a search 
result set along attributes contained in 
structured metadata. Note that in 
computational data the facet “Experiment” 
denotes experiments “in silico.” In the 
observational data, one also finds “Models,” 
a term typically reserved for simulations, 
where datasets are used in assessments and 
policy studies and simulate ecological 
systems: observational data can also be the 
result of simulations. 
 

Thus, data solutions to the scientific 
question require the use of heterogeneous 
data. The hydrologist will need to search for 
datasets from different data centers to 
discover useful data.  Each data domain has 
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
3 http://daac.ornl.gov/ 
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its own portal, its own metadata formats, 
and its own query-building methods for 
obtaining datasets. The exact definition of 
variables and observational parameters may 
require substantial searches for unfamiliar 
topics.  In order to advance investigation of 
climate change, scientists need access to 
formal descriptions of the multiple objects 
present in each activity and to tools that 
permit seamless searches across all types of 
data.  The next section presents tools that 
enable heterogeneous data access and 
improve searches.	  

4. Design and implementation 

To enable data access and to facilitate 
searches, we integrated several existing 
technologies and developed an added 
module for query expansion using Earth 
Sciences domain ontologies. Our system is 
composed of the following components, 
which we describe in detail in the rest of this 
section:  

• The National Center for 
Biomedical Ontology (NCBO) 
BioPortal ontology repository. 

• The Mercury search engine 
• Our added module providing 

programmatic access from 
Mercury to ontology terms stored 
in our BioPortal instance. 

A key factor in integrating these 
components was the existence of open 
source APIs.  

4.1. The NCBO BioPortal and its Virtual 
Appliances  

The NCBO BioPortal is a community-
based ontology repository (Musen et al., 
2011, Whetzel et al., 2011). BioPortal 
allows users to browse ontologies and to 

search for specific ontologies that have 
terms that are relevant for their work. The 
mappings between ontologies not only allow 
users to compare the use of related terms in 
different ontologies, but also allow analysis 
of how whole ontologies compare with one 
another. BioPortal provides access to the 
ontologies through a REST interface, thus 
enabling easy integration with Mercury. 
While the instance of BioPortal that runs at 
NCBO is a repository of biomedical 
ontologies—with more than 300 of them at 
the time of this writing—the BioPortal 
software is domain-independent.  
	  

For the communities that want to run 
their own ontology repositories using the 
BioPortal code base, the NCBO team 
generates a Virtual Appliance (VA)—a 
packaged copy of the web-server software 
that other communities can install and 
maintain. These communities use the 
repository to share ad access ontologies that 
are relevant to their domain. The Earth 
Science Information Partners Federation 
(ESIP) Semantic Portal 4  deployed such a 
VA on the Amazon EC2 cloud node 
procured by ESIP (Pouchard et al 2011). 
Fig. 2 shows ontologies uploaded in this 
repository. The NCBO BioPortal at ORNL 
DAAC is another such installation behind a 
firewall. It contains the same version of the 
SWEET ontology as the ESIP ontology 
portal.  We used the ORNL DAAC instance 
in our added module for ease of 
implementation and evaluation. 

4.2. The Mercury tool: aggregating metadata 

Mercury is a tool for distributed metadata 
harvesting, search, and retrieval originally 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
4 http://semanticportal.esipfed.org/ 
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developed for NASA. Mercury is currently 
used by projects funded by NASA, USGS, 
and U.S. Department of Energy (DOE) 
(Devarakonda et al., 2010). More than 
30,000 scientists use Mercury each month.  
Mercury provides a single portal to search 
quickly for data and information contained 
in disparate data-management systems. It 
collects metadata and key data from 
contributing project servers distributed 
around the world and builds a centralized 
index. Mercury allows data providers to 
advertise the availability of their data and 
maintain complete control and ownership of 
that data. Fig. 3 shows a diagram of the 
Mercury architecture including our added 
BioPortal module.  
 

Mercury currently provides access to 
over 100,000 metadata records.  It supports 
several widely used metadata standards and 
protocols such as the Federal Geographic 
Data Committee, Dublin Core, Darwin 
Core, the Ecological Metadata Language, 
the International Standards Organization’s 
ISO-19115, XML, Library of Congress 
protocols Z39.505 and Search/Retrieve via 
URL 6  , and Amazon subsidiary A9’s 
OpenSearch7. 
 

The Mercury architecture includes a 
harvester, an indexing tool, and a user 
interface. Mercury’s harvester typically 
harvests metadata records from publicly 
available external servers. Data providers 
and principal investigators create metadata 
for their datasets and place these metadata in 
a publicly accessible place such as a web 
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
5 http://old.cni.org/pub/NISO/docs/z39.50-
brochure/ 
6 http://www.loc.gov/standards/sru/ 
7 http://www.opensearch.org/ 

directory or FTP directory. Mercury then 
harvests these metadata, builds the 
centralized index, and makes it available for 
the Mercury search user interface. Mercury 
also harvests metadata records from external 
catalogs using the Open Archives Initiative 
Protocol for Metadata Harvest (OAI-PMH) 
(Devarakonda et al., 2011) and other web-
based harvesting techniques. 

 
The Mercury search interfaces allow 

users to perform simple, attribute-based, 
spatial and temporal searches across these 
metadata sources. The Mercury repository 
of metadata for distributed data sources 
provides low latency search results to the 
user. For instance a full-text search of 
70,000 XML documents returned 48 records 
in 90 miliseconds; a fielded search of the 
same collection returned 7 documents in 122 
miliseconds (Devarakonda et al., 2010).  
 

Mercury’s query engine is built using a 
service-oriented architecture, which includes 
a rich user interface. This interface allows 
users to perform various types of search 
capabilities, including 1) simple search, 
which performs a full text search, 2) 
advanced search, which allows users to 
search against controlled-vocabulary 
keywords, time period, spatial extent and 
data provider information, and 3) web 
browser tree search, which enables a drill-
down through the metadata facets using a 
hierarchical keyword tree.  

4.3. Adding semantics and integrating components  

With the breadth of sciences represented 
within the Mercury metadata records, 
scientists can address some key 
interdisciplinary scientific challenges related 
to climate change and its environmental and 
ecological impacts, such as carbon 
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sequestration and mitigation. However, the 
wealth of data and metadata also makes it 
difficult to pinpoint the datasets that are 
relevant to particular scientific inquiries. 
 

We have applied semantic 
technologies—ontologies, in particular—to 
improve search results. There are several 
reasons for using this approach. First, 
simply using popularity determined by 
pointing links to provide a high ranking to a 
search result, as with Google, typically is 
not useful in the case of scientific data 
queries. Each scientific inquiry tends to be 
unique, and datasets are not directly indexed 
so that result ranking may not be useful. 
Thus, we must be able to improve search 
results based on the meaning of the data 
descriptions. Ontologies represent such 
meaning in a machine-readable way. 
Second, scientific queries are unlike 
everyday queries because they return 
specific datasets, which themselves have 
numerous parameters that may or may not 
be exposed to a general search engine. For 
example, the Earth System Grid Federation 
(ESGF) gateway exposes 368 variables to 
search. Third, each domain science has its 
own terminology, more or less curated and 
consensual, and with various degrees of 
standardization. The same term may refer to 
different linguistic or scientific objects 
across domains (semantic plurality), and 
different terms mean the same thing 
(synonymy). For all these reasons, we 
decided to use scientific ontologies because 
they can provide a context for search results, 
in a way that keywords never will. 
	  

The SWEET ontologies are currently 
under the ESIP governance and can be 
accessed from the ESIP Semantic Portal. 
SWEET 2.3 currently contains over 4,500 
terms organized in 200 OWL ontologies 

classifying 9 top-level classes. For SWEET 
2.3 these top-level classes are:  
−  Representation (math, space, science, time, 

data)  
−  Realm (ocean, land surface, terrestrial 

hydroshere, atmosphere, heliosphere, 
cryosphere, geosphere) 

−  Phenomena (macro-scale ecological and 
physical) 

−  Processes (micro-scale physical, biological, 
chemical, and mathematical) 

−  Matter (living thing, material thing, material 
thing) 

−  Human Activities (decision, commerce, 
jurisdiction, environmental, research),  

−  Property (binary, categorical, ordinal, 
quantity) 

−  Role (biological, chemical, geographic, 
impact, representative, trust),  

−  Relation (human, physical, space, time, 
chemical).  
 
We used the SWEET ontologies to 

improve the results of the Mercury search 
interface. The ontologies provide context by 
linking individual keywords to a scientific 
realm and suggest additional keywords for 
searches. We designed an ontology service 
that allows integration of ontology terms 
into search results. The Mercury search 
system passes its search terms to the VA, 
which returns one or several matching terms 
through the REST interface. The user can 
choose any of these as additional search 
term for Mercury, or directly display the 
results indicated by the ontology sub-class 
terms. For example, an ontology-based 
search on biomass returns the keywords 
“biomass” and “litter” because litter is a 
sub-class of biomass in SWEET.  

5. Results 

The ontology service provides domain 
context, parameter attribute, and entity 
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annotations to the Mercury search system. 
Mercury user interface uses a faceted search 
approach; we present the ontology results to 
the user in the same user interface (Fig. 4). 
The search term used in this figure is 
“biomass.” The five top boxes (“Filter by”) 
show the faceted search results without 
semantic search. The bottom four boxes 
(“Ontology”) present the results of the 
semantic search.  
 

Unlike a faceted search that highlights 
attributes within a set of results but cannot 
enlarge the set, the semantic solution can 
implement both restrictions and expansions 
of the initial set of results. In our semantic 
search, there are four new dimensions 
enabled by ontologies: Ontology Concepts, 
Ontology Super-classes, Ontology Sub-
classes and Filter by keywords and all sub-
classes. Ontology concepts present each 
search term within the ontological hierarchy. 
Ontology Super-classes shows the 
hierarchical level one level up and Ontology 
sub-classes—one level down. To display the 
facet “Filter by keywords and all sub-
classes” the ontology service sends the sub-
class terms to Solr, which returns links to 
datasets of interest (not shown in the figure). 
 

5.1. Using ontologies to improve context 

Recall the scenario that we described in 
Section 2. Our hydrologist will need to 
search for datasets annotated with 
“biomass” because she wants to analyze the 
transport of biochemical species in the river 
flow. She will search for datasets containing 
the term “biomass.” A Mercury search using 
controlled vocabulary keywords returns 35 
datasets, a full-text search returns 187 
datasets. A search for “biomass OR humus” 
(a type of biomass) returns 192 datasets, 

indicating that 5 potentially relevant datasets 
are not included in the search on biomass. 
Querying the SWEET ontologies through 
BioPortal’s REST API, the ontology service 
exposes “humus” as an additional search 
term for Mercury in the first discovery 
session about “biomass.” Humus is a sub-
class of biomass in SWEET. Thus, the 
semantic search returns the five additional 
datasets without the user having to know 
about specific types of biomass. “Biomass” 
also acquires scientific context when the 
ontology service exposes that it can be a 
form of Energy Storage and a Living Entity.  
These examples demonstrate how ontologies 
help expand the search and provide 
scientific context for the search terms. 

5.2. Using ontologies to reduce the number of 
search results 

 “Carbon” is another popular search term in 
Mercury, since the increase in the 
concentration of carbon dioxide in the 
atmosphere is considered a potential factor 
of climate change. A Mercury search for 
“carbon” returns 264 datasets from the 
ORNL DAAC. With the ontology service 
integrating the results of an ontology search 
into the facetted search, “carbon” acquires a 
scientific context and additional query terms 
that can be used to reduce the scope of the 
original search. For example, the individual 
in one of the ontologies, 
“stateTimeGeologic2:Carboniferous,” links 
results to datasets relevant to geological 
times (paleo-environmental science), while 
the sub-class “carbon offset” links to 
datasets relevant to “human environmental 
control” and “human activity.” In addition, 
“offset” is not a facet offered by the 
Mercury search system but the ontology 
search suggests this sub-class to reduce the 
result set further. Limiting the search to both 
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“carbon” and “offset” produces only two 
results. 
 

While ontologies provide additional 
search terms, we also use the ontology 
structure to enable the user to filter the 
results in a meaningful way. 

5.3. Analyzing the coverage of ontologies 

In addition to SWEET 2.3, the ESIP 
ontology collection includes the Plant 
Ontology, which describes structure and 
developmental stages of a plant 
(Bruskiewich et al., 2002), and the 
Extensible Observational Ontology (OBOE) 
for representing scientific observations and 
measurements (Madin et al., 2007), and its 
extension to represent ecological and 
environmental data.  

Using simple term matching, we 
evaluated how well the terms in the SWEET 
ontologies cover the top 100 controlled-
vocabulary keywords that were used for 
indexing datasets in Mercury. “Biomass” is 
the top keyword currently indexing 138 
datasets. Fig. 5 shows the results of this 
evaluation. 21 of the top 100 keywords do 
not appear in the ontologies. Thus, 79% of 
the top 100 keywords in Mercury have at 
least one match in the selected ontologies. 
At the long tail of the distribution one 
keyword (water) has 38 matches, and two 
(air, carbon) have 28 matches. A fifth of the 
Mercury keywords do not appear in the 
SWEET ontologies. Thus, the scientific 
community needs to develop additional 
ontologies to enhance the keyword 
collection adequately. 

6. Discussion 

Our approach to the investigation of climate 
change has led to the integration of search 

capabilities and the development of a 
semantic service for discovering multi-
disciplinary datasets in Earth and 
Environmental sciences. Scientists can use 
our semantic service to discover new 
datasets that were not included in the 
original search results, thus expanding the 
original queries.  
 

We used a BioPortal instance as a 
source for ontologies rather than a triple-
store or an OWL API to process the 
ontologies for several reasons. First, the 
REST service interface that BioPortal 
provided was easy to integrate into the 
Mercury architecture. Second, ontology 
authors sometimes use idiosyncratic 
approaches to representing some features of 
their ontologies, such as preferred names or 
synonyms for terms. These lexical features 
are key to user searches but ontologies use 
different properties to represent them. 
BioPortal uses ontology metadata to extract 
these properties and provides its users with a 
single service call to access this information 
across all ontologies in a repository. Finally, 
BioPortal enables scientists to submit new 
ontologies through its web interface and 
these ontologies become available to the 
semantic search in Mercury. Thus, if a 
scientist discovers a new ontology that 
covers her domain of interest, she can add it 
to her set of ontologies to expand the 
meaningful results from her semantic 
search.  
 

We set up the ESIP instance of 
BioPortal because this user community 
needs a stable ontology repository that 
covers the Earth and Environmental 
Sciences domains. This instance of 
BioPortal is accessible to users with all the 
functionality provided by BioPortal, 
including annotations, ontology extensions, 
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and term mappings. New community 
additions to the ontologies made through 
this instance are directly accessible to the 
semantic service. ESIP is currently 
discussing curation mechanisms for 
ontologies in the ESIP portal. 
 

However, our approach has several 
limitations. First, the faceted display 
becomes crowded very quickly and a more 
dynamic presentation of search results may 
be beneficial. Another, more serious, 
limitation is that the quality of the newly 
discovered metadata is contingent on the 
quality of the ontologies used in our 
implementation. BioPortal curates the 
ontologies by enforcing compliance with 
ontology language standards and resolving 
relationships and axioms to detect potential 
conflicts, but it cannot check for coverage or 
correctness in terms of domain expertise. 
Search terms and thesaurus keywords in 
Mercury may be absent from current 
ontologies, or the ontology classification 
may not bring additional information that is 
not already presented by the faceted terms. 
However, as semantic technologies mature, 
more substantial ontologies become 
available in many scientific domains.  

7. Conclusion and Future Directions 

We have made several initial steps in order 
to address the limitation on coverage and 
quality of the ontologies. We will use the 
features that are currently available in 
BioPortal to solicit feedback and to provide 
additional information about the ontologies. 
Specifically, BioPortal includes a comment 
field for each ontology term that users can 
edit. ESIP members can take advantage of 
this feature to resolve conflicts and to 
propose new terms. Second, the ESIP 

Semantic Web portal team is currently 
working on manual evaluation of the 
coverage of ontologies. The team plans to 
submit proposals and annotations of terms to 
the ESIP community for approval. Finally 
we plan to use the mapping function of 
BioPortal for creating mappings between 
terms in the ontologies, thus helping to 
extend coverage. 

The solution that we presented in this 
paper leverages the federated search 
capabilities in Mercury that collect metadata 
records from several scientific domains, and 
the storage, access and curation 
functionality of BioPortal. Our solution 
provides guidance on how to leverage 
semantic capabilities for improving search 
results. Use of ontologies—even lightweight 
ones—provides a path for helping domain 
experts find the information that they need 
from heterogeneous datasets. We 
demonstrated that the tools that are already 
available today enabled us, with minimal 
additional effort, to build on two mature 
systems and to find relevant datasets for 
interdisciplinary inquiries. The paper thus 
indicates a direction for linking 
environmental, ecological and biological 
sciences. 
 

8. Availability and Requirements 

NCBO BioPortal software is available at: 
http://www.github.com/ncbo  
Authors refer to (Devarakonda et al., 2010) 
for Mercury. 

List of Abbreviations 

API: Application Programming Interface. 
EC2: Amazon’s Elastic Compute Cloud. 
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ESGF: Earth System Grid Federation 
ESIP: Earth Science Information Partners. 
FTP: File Transfer Protocol. 
ISO: International Standards Organization. 
MODIS: Moderate Resolution Imaging 
Spectroradiometer. 
NASA: National Areonautics and Space 
Administration  
NCBO: National Center for Bio-medical 
Ontologies. 
OAI-PMH: Open Archives Initiatives-Protocol for 
Metadata Harvesting. 
ORNL: Oak Ridge National Laboratory. 
ORNL DAAC: ORNL Distributed Active 
Archive Center. 
OWL: (W3C) Web Ontology Language. 
RDF: (W3C) Resource Description Format. 
SKOS: (W3C) Simple Knowledge 
Organization System. 
SPARQL: W3C Query Language for RDF. 
SWEET: Semantic Web Earth and 
Environmental Terminology. 
SWSE: 
TB: Terabyte. 
URL: Uniform Resource Locator. 
USGS: US Geological Survey. 
VA: Virtual Appliance. 
W3C: World Wide Web Consortium. 
XML: (W3C) Extensible Markup Language. 
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Fig.	  1	  Different	  types	  of	  data	  in	  our	  river	  channel	  transport	  use	  
case	  scenario	  
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Fig.	  2	  The	  ESIP	  Semantic	  Portal	  lists	  ontologies	  relevant	  to	  Earth	  sciences.	  It	  contains	  the	  SWEET	  ontology	  
and	  many	  others.	  Users	  can	  browse	  each	  ontology	  hierarchy	  or	  search	  for	  terms	  of	  interest	  across	  all	  

ontologies.	  	  



17	  
	  

	  
	  
	  
	  
	  

	  
	   	  

Fig.	  3	  Architecture	  of	  the	  Mercury	  Search	  Engine	  and	  its	  integration	  with	  BioPortal	  ORNL	  DACC	  
instance.	  Blue	  boxes	  indicate	  reusable	  software	  components.	  Green	  boxes	  are	  metadata	  files.	  Yellow	  
boxes	  are	  external	  services.	  The	  Mercury	  Search	  service	  calls	  BioPortal	  REST	  services	  to	  add	  ontology	  

knowledge	  to	  the	  queries	  
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Fig.4	  User	  interface	  for	  the	  semantic	  search	  in	  ORNL	  DACC.	  The	  user	  has	  searched	  for	  “biomass”	  and	  
the	  interface	  suggest	  additional	  related	  terms	  based	  on	  the	  ontology	  search.	  The	  five	  tabs	  named	  
“Filter”	  display	  Mercury	  search	  results.	  The	  three	  tabs	  named	  “Ontology”	  display	  the	  results	  of	  the	  

ontology-‐based	  search	  obtained	  with	  our	  prototype	  
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Fig.	  5	  Ontology	  coverage	  of	  the	  top	  100	  controlled-‐vocabulary	  keywords.	  
	  


