
Collecting Sensor Data for High-Performance
Computing: A Case Study

Line C. Pouchard, Jonathan D. Dobson, and Stephen W. Poole
Computing and Computational Sciences

Oak Ridge National Laboratory
Oak Ridge, TN, USA

Abstract - Many research questions remain open with
regard to improving reliability in exascale systems.
Among others, statistics-based analysis has been used
to find anomalies, to isolate root causes, and attempt
to predict failures. But well-understood methods and
best practices for collecting reliability data in a
uniform way are still lacking, which impedes analysis.
We report our experience with collecting these data
from heterogeneous sources on a testbed cluster and
present our data collection tool. This case illustrates
the fact that reported metrics largely depend upon
individual system configuration. We then investigate
standards and specifications in manufacturing and
desktop computing to identify concepts that may be
useful for representing High Performance Computing
(HPC) data and present a taxonomy that utilizes these
concepts.

Keywords: Reliability, Accessibility, Serviceability
(RAS), data collection, sensor data representation.

1. Introduction

 As HPC approaches the exascale, questions
regarding the lack of scalability of current methods for
fault-tolerance and resilience, such as replication and
checkpointing, have been raised. In particular, the
overhead entailed by checkpointing and the expected
number of cores may prevent an application to make
any progress between failures and re-start. In two
recent review papers, Cappello et al. [1,2] outline
recommendations advocating improved communication
in the resilience community, and propose research
topics “to ensure the correct termination of parallel
execution on exascale systems.” Within this proposed
research agenda, this paper attempts to initiate a
discussion about the challenges encountered with
acquiring data and collecting error information. There
is a lack of definitions of what constitutes an error,
what we mean by soft, transient, and intermittent errors,

and what constitutes failure. System monitoring tools
do not follow standard formats, nor are there existing
standards on how system managers enter event logs.
There is no consensus in the community on what events
and metrics we measure to improve fault-tolerance in
HPC. A better understanding of failures is needed as
several recent studies reach contradictory conclusions
as to the root cause of failures – hardware versus
software. [3,4]
 To illustrate some of the problems identified above,
we collected sensor data in an HPC cluster and report
on our experience. We implemented a tool that
collects data from several sources and share our
experience with data collection on our testbed.
Collecting hardware-related metrics such as core
temperatures, fan rpms and voltages deceptively appear
straightforward, until the following obstacles are
encountered:

– proprietary and/or embedded sensors report
data that cannot be independently tested, or
even identified,

– sensors send alerts for non-existent events
(false-positive),

– thresholds cannot be easily modified or
calibrated, and

– hardware metrics are provided at coarse
resolution in time and unit.

We also investigated several specifications for
reporting sensor data in an attempt to find suitable
concepts for HPC data. Finally, we propose a
taxonomy for collecting system monitoring data that
accommodates heterogeneous sources.
 The paper is organized as follows. After this
introduction, Section 2 reviews system monitoring
tools with a focus on their data collection aspect.
Section 3 contains a description of our collection
effort, the architecture, and the implementation of
DCAT, our collection tool. Section 4 presents a review
of available mechanisms for obtaining data from
embedded sensors and existing standards that could be

used to organize this data. In Section 5 we present our
taxonomy for storing data independently of its source.
Section 6 concludes with further research plans.

2. Related work

 Many proprietary and open-source tools for system
monitoring in HPC are available, including OVIS, an
advanced prediction and analysis tool aimed at
discovering targets for check-pointing in nodes about
to fail [5, 6]. Ganglia, a widely used tool [7] can report
on temperatures and other metrics for a limited time
and on a per-metric basis. Thus, it has little value for
forensic analysis. Data collectors have been written for
OVIS, that capture low-level data from lm-sensors,
proc/ files, and other sources [5]. SMARTMON [8]
controls and monitors disk storage and is built into
most modern disks, but we are also interested in core
temperatures and other metrics pertaining to CPU. The
Sisyphus system uses latent semantic indexing to
discover rare, correlated events in the high volume of
messages reported in the system logs at the extreme
scale. [9, 10]
 These tools represent very important efforts for
analyzing the health of systems in clusters and clouds
and for trying to predict the next failure, but they do
not foster the sharing of information and methodology
that would ensure the emergence of standard
descriptions of Reliability, Availability, Serviceability
(RAS) events recommended in [1, 2]. In particular,
one has to dig deep into hardware specifications and
software documentation or implementation to find what
metrics are actually reported and used to make a
prediction in each tool. Given that one purpose of
most of these tools is to facilitate system management
of large systems, they are designed to mask the
complexity of the low-level details from the end user,
so the latter is not surprising. However, this situation
makes it difficult to establish common definitions and
specification for metrics.
 Some data models and definitions exist for
organizing HPC health metrics. Stearley proposes a
State Model derived from a semi-conductor
specification defining reliability (SEMI FE10-0304).
This model describes the state of a system in terms of
its scheduled and non-scheduled downtime,
engineering and production time, standby time, and
characterizes failure as “ANY transition into
unscheduled downtime.” [9]. These definitions
represent a step in the right direction, but do not appear
to being used elsewhere.

3. Data collection, architecture, and
prototype implementation

 For our case study, we were able to use as testbed a
32-nodes cluster with HP motherboards, and two quad-
cores, AMD Opteron 2356, with 16G of RAM each,
for a total of 256 processors. Networking is
implemented by two Myrinet switches, two 10GE
cards, and two DDR IB cards.
 Our tool collects physical parameter data, such as
temperatures and fan rpms. Our application can read
data from lm-sensors [11] and the Intelligent Platform
Management Interface (IPMI) [12]. In our case-study,
we obtained six temperature readings and six fan
readings per node, located as follows:

• Temp 1: System board.
• Temp2 : CPU socket 1.
• Temp3: CPU socket 2.
• Temp4: System board Temperature located

under the power supply cage.
• Temp5: System board Power Supply.
• Temp6: System board Temperature.
• Fans 1-6: Two System Internal Expansion

Board fans and 4 CPU Fans.
DCAT also collects data from /proc/cpuinfo, /proc/stat,
and /proc/meminfo for memory statistics and CPU.
The collected data for system state is as follows:

• Cpu usage: recorded in jiffies from which
percentages can be calculated per core.

• Cpu idle time: same as above.
• Cpu average usage per node.
• Cpu average idle time per node.
• System or node uptime.
• Memory total: total usable memory on the

system.
• Memory free: Amount of free memory.
• Memory cached: Amount cached on disk.
• Memory active: Amount of recently used.
• Memory inactive: Amount of inactive

memory that can be freed or cached.
• High memory total: Total amount of high

memory: anything above 896MB on 32-bit
machines. Not used for 64-bit. [13]

• High memory free: Amount of unused high
memory.

• Low memory total: total amount of low
memory that the kernel can access directly.
[13]

• Low-free: Amount of unused low memory.
• Swap-total: Total usable swap space.
• Swap-free: Amount of unused swap space.

 Our prototype architecture is composed of a client-
server engine, a MySQL database, and communication
mechanisms shown in Figure 1. For ease of
implementation, the prototype communication layer
uses Message Passing Interface. The data is accessed
by a customized module for each source. The client
processes the data into a structure and pushes it to the
DCAT server for uploading into the database.
 DCAT runs on an arbitrary number of nodes, with
the nodes split up into separate groups. Each group has
a server process that collects sensor data from all the
nodes in its group. The server process in each group
uploads the collected data to a database that resides on
another system. The client nodes are configured to
push data at the same interval as the server process
uploads data. The main reason for the current
configuration is the fact that our compute nodes do not
all have local disks installed.
 We have been able to collect data from our testbed
for over a year. However, a major drawback of the
implementation is the use of MPI: if one node fails,
then the entire program fails. This is a common pitfall
when using MPI. In order to address this issue, we
plan to use sockets for the communication layer in the
next implementation. Using sockets, we can implement
the same group architecture, but check for a reply when
sending data to the server process. If the client nodes

cease to receive a reply from the group server, the next
node spawns a server process to take over.
 In about one month of data collection on a 32-node
cluster, we have obtained about 1.5 GB of data, the
bulk of it consisting of time-series at one minute
intervals. Given the data model structure, static data,
such as IP addresses, names and hardware descriptions,
are collected only once. With twenty-two sensor
values and eight memory statistics values per node, this
amounts to 30 million sensor values and one million
memory statistics values. No log data is presently
collected by our system except for indicating the latest
reboot.
 Our collection effort showed that the number of
temperature and fan values reported by IPMI and lm-
sensors depends on hardware implementation. So does
location, which may be important for detecting
anomalies and error correlation in HPC. The type of
sensors a platform is instrumented with also depends
heavily on hardware configuration. For instance,
although our platform was IPMI-compliant, and
reported some metrics through IPMI, we were unable
to collect voltages, which others have collected with
IPMI. Our collection module collects temperatures and
fan data data every minute.
 Our example implementation has illustrated some of
the challenges encountered while collecting metrics
related to system health. To better understand what is
actually available for system instrumentation and health
monitoring, we now review available data sources.

4. Data sources and standards for
sensor data representation
4.1. Data sources

 Linux monitoring sensors (lm-sensors) is a well-
known open source utility for sensor data acquisition.
Starting with Linux kernel 2.5, lm-sensors are
packaged with most distributions. lm-sensors report
temperature, voltage, and fan rpm data. The utility
depends on the community to write drivers for boards
and platforms, which can be slow for new models.
Metadata in lm-sensors is somewhat explicit, with
variable names such as VCore (voltages with a
minimum and maximum), CPU Fan 1, Front Fan 3,
coretemp Core 0, coretemp Core 1, etc. A driver for
IPMI exists but it was more efficient to capture data at
the source.
 IPMI is an open-source specification sponsored by
Dell, HP, NEC, Intel, and implemented in proprietary
tools and an open-source tool. Its main engine, the
Baseboard Management Controller, coordinates
messages from on-board sensors and communicates
Sensor Data Records to the Sensor Data Repository.
[14] IPMI operates at the BIOS level, and is intended

Figure 1. DCAT Architecture Diagram.

for integration into system management tools. Many
manufacturers (but not all) have adopted IPMI and
deploy their sensors with IPMI drivers. IPMI
essentially reports temperatures, voltages, and fan
rpms, depending on the platform. For those interested
in using IPMI data, without system management tools,
attributing measurements to a particular temperature
sensor or fan on a board is a matter of guess work,
since IPMI returns data such as Temp 1, Temp 2, Temp
3, Fan 1, Fan 2, Fan 3, etc. The sensors listed in
Section 3 for our testbed were provided through a long
chain of emails to a direct contact at the manufacturer.
IPMI is not supported by Cray, Inc who utilizes the
Cray RAS and Management System. IPMI reports
temperatures as integers in Celsius, which is not quite
sensitive enough to detect rapidly rising trends and
allow enough margin for corrective action.
 For our case-study, we also procured Sun Small
Programmable Objects (SunSPOTS) [15] and
instrumented the room where our testbed is located.
SunSPOTs are self-contained sensor devices, powered
by mini-USB and communicating with a base station
through a radio connection at 2.4 GHz. SunSPOTs
operate in unlicensed bands at high frequencies, on
channels 11-26. A SunSPOT base-station exports its
data to the system where it is mounted via USB port.
Data communication between a SPOT and its base is
encrypted. By default, SunSPOTS are equipped with a
light and temperature sensors. By placing them at
strategic locations, for instance under a power unit, or
on top of a switch, it is possible to obtain temperature
data at the location, thus providing a basis for
comparison with other methods such as IPMI or lm-
sensors. SunSPOTs claim a range of 70 meters
between base station and SPOT, but due to the strong
interfering frequencies in the machine room,
approximately thirty feet was the maximum range we
obtained. As of version 6.0, SunSPOTs do not support
64-bit, which can make it inconvenient to use. For
SunSPOT data, we use the SunSPOT API to upload
data to a database residing on a 32-bit system hosting
the base station.
 Our investigation of data sources for system health
metrics showed that these are system-dependent and
that data representation must be tailored to the source.
In the following section, we present our investigation
of open source sensor data representation in
communities other than HPC where sensors are used,
in order to find standard representations.

4.2. Standards for sensor data
representation

 We have examined in details open source standards
for sensor information processing describing sensor

data information in [16]. The proliferation of sensor
manufacturers and usages in many fields of science and
industry have raised multiple challenges for data
collection and processing. When data fusion from
heterogeneous sensors and interoperability are desired,
standards become advantageous.
 We hereby discuss standards and specifications
developed by the IEEE, the Open-Geospatial
Consortium (OGC), the Distributed Management Task
Force (DMTF), and the Intelligent Platform Modeling
Initiative (IPMI), an Intel-led effort at standardizing
hardware-related metrics.
 IEEE 1451 is a specification enabling data transfer
to a network and the remote operation of sensors [17].
These “smart sensors” transfer data about themselves
and their payload using Transducer Electronic Data
Sheets (TEDS). TEDS are generic data structures, four
TEDS per service are required while optional TEDS
are also available. Details on this standard's
architecture are available in [16 and 17]. IEEE1451
contains instructions that sensor manufacturers can
use for standardizing their data transfer protocols.
IEEE1451 also defines four Application Programming
Interfaces (API) using the HTTP1.1 protocol. Thus an
IEEE1451-compliant sensor provides data directly
usable by other applications that conform to the IEEE
1451 model or to applications communicating by http.
However, sensor manufacturers for HPC environments
do not use IEEE 1451, and connectivity between nodes
does not use Internet protocols.
 The OGC standards, including Sensor ML,
Transducer Model Language, and Sensor Web
Enablement, contain very rich metadata for
characterizing sensor data, with a special emphasis on
location due to its origin in the geo-spatial community.
[18] SensorML describes sensor systems, processing
algorithms and workflows and can encode the on-
demand execution of algorithms for remotely
controlling sensors. [19] However, OGC sensor models
are also designed for sensor data and command transfer
over the Internet.
 The DMTF [20] is an industry organization leading
the development of management standards and
infrastructure components for instrumentation, control
and communication in Enterprise and Internet
environments. In particular, the Common Information
Management (CIM) and Common Diagnostic
Management specifications [21] contain many entities
that can be used for a data model, including classes for
metrics, and events, and profiles for sensors and power
management. CIM and other DMTF technology was
designed to unify the management of information for
desktops, servers, storage, communications, and data
centers. The open source Standards Based Linux
Instrumentation for Manageability [22] has been

developed by IBM around the CIM standard but it
relies on Web-based Enterprise Management.

5. Taxonomy

 Following the example of the OGC Sensor Web
Enablement effort, we designed a data model based on
the abstraction of a “sensor”. In SensorML, a sensor is
a process that converts real phenomena into data. Every
data point is referenced to a “sensor,” which can be an
actual sensor like a thermistor, a physical object like a
fan, or a process that collects system state data like
CPU usage. This abstraction is advantageous to our
purpose because a process is a basic unit in computing
and the output of a process is data. We use sensor to
represent temperature sensors, fans, voltmeters, but
also CPU, where the data is the amount of CPU used at
a particular time point.
 Our data model includes five objects: sensor, system,
measurement, memory statistics, and unit. The
measurement object contains data from all physical
parameters and includes CPU usage. The content of
this object is highly dynamic. The memory-stats object
contains values related to memory. This object
contains both static and dynamic data. Because of the
amount of static information related to memory (as
seen in Section 3), we did not treat it as a sensor and
kept it separate. Both objects have a time stamp. The
sensor, system and unit objects contain static data that
change only if the physical configuration of the system
changes. Preserving system-state and configuration
parameters are needed for forensic root-cause analysis
of failures.

6. Conclusion and Future Work

 We presented our data collection effort for a 32-
node, quad-core testbed to illustrate the heterogeneity
of data sources reporting on system-health in HPC and
the lack of standards in data representation. We found
that even for platforms that purportedly comply with a
widely-used manufacturer specification (IPMI),
instrumentation does not report all the metrics that it
claims to report. We also found that the description of
the reported data (the metadata) can be very thin and
that the units can be too coarse for spotting trends
(integer delta in Celsius).
We investigated sensor data representation standards
used in other fields with the purpose of finding entities
and/or concepts that could be used in HPC. We found
that the abstraction of “sensor as process” designed for
SensorML to be advantageous but insufficient to hold
all the needed metrics.
 Future work includes the study of the metrics and
event classes in the CIM specifications with the goal of

testing them for HPC. The addition of system logs to
our data collection may also require adapting our
taxonomy.

6. References

[1] F. Cappello, “Fault Tolerance in Petascale/Exascale
Systems: current knowledge, challenges and research
opportunities,” The International Journal of High
Performance Computing Applications, Vol. 23, No. 3,
Fall 2009, pp. 212-226.

[2] F. Cappello, A. Geist, B. Gropp, L. Kale, B.
Kramer, and M. Snir, “Toward Exascale Resilience,”
The International Journal of High Performance
Computing Applications, Vol. 23, No. 4, Winter 2009,
pp. 378-388.

[3] A. Oliner and J. Stearley. “What supercomputers
say: a study of five system logs,” in Proceedings of the
International Conference on Dependable Systems and
Networks. (DSN 2007).

[4] B. Schroeder and G. Gibson, G. “Understanding
failures in petascale computers,” Journal of Physics:
Conference Series, Vol. 78, (SciDAC 2007).

[5] J. Brandt, A. Gentile, J. Mayo, P. Pébay, D. Roe, D.
Thompson, and M. Wong. “Resource Monitoring and
Management with OVIS to Enable HPC in Cloud
Computing Environments ,” IEEE International
Symposium on Parallel & Distributed Processing, (1-
8), 2009.

[6] J. Brandt, B. Debusschere, A. Gentile, J. Mayo, P.
Pébay, D. Thompson, and M. Wong, “Using
Probabilistic Characterization to Reduce Runtime
Faults in HPC Systems,” Proceedings of the Eighth
IEEE International Symposium on Cluster Computing
and the Grid, (759-764). 2009.

[7] Ganglia Monitoring System. Available March 1,
2010. http://ganglia.sourceforge.net.

[8]Smartmontools. Available March 1, 2010.
http://smartmontools.sourceforge.net.

[9] J. Stearley, “Towards a Specification for Measuring
Red Storm Reliability, Availability, and Serviceability
(RAS),”, Cray Users Group Conference (May 2005).

[10] J. Stearley, “Defining and Measuring Supercomputer
Reliability, Availability, and Serviceability (RAS),” DARPA
HPCS Team & PI Meeting, 2005.
http://www.cs.sandia.gov/~jrstear/ras.

[11]LM sensors. http://www.lm-sensors.org/wiki and
http://www.lm-sensors.org/wiki/Documentation. Available
March 1, 2010.

[12] IPMI - Intelligent Platform Management Interface
Specification Second Generation V2.0. Document
Revision 1.0. February 12, 2004.
http://www.intel.com/design/servers/ipmi/. Available
March 1, 2010.

[13] D. P. Bovet and M. Cesati, “Understanding the
Linux Kernel, 3rd ed.” Sebastopol: O'Reilly Media,
2005.

[14] H. Zhuo, J. Yin, A. V. Rao, Remote management
with the baseboard Management Controller in Eight
Generation Dell PowerEdge Servers. Dell Power
Solutions, 2004.

[15] SunSPOTS. http://www.sunspotworld.com/
Available March 1, 2010.

[16] L. C. Pouchard, S. Poole, J. Lothian, and C.
Groer, Open Standards for Sensor Information
Processing, Oak Ridge National Laboratory, Oak
Ridge, TN, Tech. Rep. ORNL/TM-2009/145, 2009.

[17] IEEE Instrumentation and Measurement Society.
Technical Committee on Sensor Technology (TC-9).
“IEEE Standard for a Smart Transducer Interface for
Sensors and Actuators – Common Functions,
Communication Protocols, and Transducer Electronic
Data Sheet (TEDS) Formats (IEEE1451.0.2007)”.

[18] Botts, Mike, Carl Reed, George Percivall, John
Davidson. “OGC Sensor Web Enablement: Overview
and High Level Architecture,” Proceedings of the 5th

International Information Systems for Crisis Response
and Management (ISCRAM) Conference. F. Friedrich
and B. Van de Walle, eds. Washington, DC: (May
2008).

[19] Botts, Mike. “Sensor Model Language
(SensorML) Details.” Earth System Science Center,
UAB Huntsville. September 2007.
http://schemas.opengis.net/sensorML/.

[20] Distributed Management Task Force, Inc.
http://www.dmtf.org. Available March 1, 2010.

[21] Common Information Model (CIM).
http://www.dmtf.org/standards/cim. Available March
1, 2010.

[22]Standards Based Linux Instrumentation.
http://sblim.wiki.sourceforge.net. Available March 1, 2010.

Acknowledgments:
This work was supported by the Extreme Scale
Systems Center at Oak Ridge National Laboratory.
The submitted manuscript has been authored by a
contractor of the U.S. Government under Contract No.
DE-AC05-00OR22725. Accordingly, the U.S.
Government retains a non-exclusive, royalty-free
license to publish or reproduce the published form of
this contribution, or allow others to do so, for U.S.
Government purposes. Special thanks to Josh Lothian
and Chris Groer from ORNL for their help with the
testbed

