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Abstract - Many research questions remain open with  
regard  to  improving  reliability  in  exascale  systems.  
Among others, statistics-based analysis has been used  
to find anomalies, to isolate root causes, and attempt  
to predict failures.  But well-understood methods and 
best  practices  for  collecting  reliability  data  in  a  
uniform way are still lacking, which impedes analysis.  
We report  our  experience  with collecting  these data  
from heterogeneous sources on a testbed cluster and  
present our data collection tool.  This case illustrates  
the  fact  that  reported  metrics  largely  depend  upon  
individual system configuration.  We then investigate  
standards  and  specifications  in  manufacturing  and  
desktop  computing  to  identify  concepts  that  may  be  
useful for representing High Performance Computing  
(HPC) data and present a taxonomy that utilizes these  
concepts.   
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1.  Introduction

     As  HPC  approaches  the  exascale,  questions 
regarding the lack of scalability of current methods for 
fault-tolerance  and resilience,  such as replication and 
checkpointing,  have  been  raised.  In  particular,  the 
overhead  entailed  by checkpointing and the expected 
number of cores may prevent an application to make 
any  progress  between  failures  and  re-start.   In  two 
recent  review  papers,  Cappello  et  al.  [1,2]  outline 
recommendations advocating improved communication 
in  the  resilience  community,  and  propose  research 
topics  “to  ensure  the  correct  termination  of  parallel 
execution on exascale systems.”  Within this proposed 
research  agenda,  this  paper  attempts  to  initiate  a 
discussion  about  the  challenges  encountered  with 
acquiring data and collecting error information.  There 
is  a  lack  of  definitions  of  what  constitutes  an  error, 
what we mean by soft, transient, and intermittent errors, 

and what constitutes failure.  System monitoring tools 
do not follow standard formats, nor are there existing 
standards  on  how system managers  enter  event  logs. 
There is no consensus in the community on what events 
and metrics we measure to improve fault-tolerance in 
HPC.   A better understanding of failures is needed as 
several  recent studies reach contradictory conclusions 
as  to  the  root  cause  of  failures  –  hardware  versus 
software. [3,4]  
     To illustrate some of the problems identified above, 
we collected sensor data in an HPC cluster and report 
on  our  experience.   We  implemented  a  tool  that 
collects  data  from  several  sources  and  share  our 
experience  with  data  collection  on  our  testbed. 
Collecting  hardware-related  metrics  such  as  core 
temperatures, fan rpms and voltages deceptively appear 
straightforward,  until  the  following  obstacles  are 
encountered:

– proprietary  and/or  embedded  sensors  report 
data  that  cannot  be  independently tested,  or 
even identified,

– sensors  send  alerts  for  non-existent  events 
(false-positive),

– thresholds  cannot  be  easily  modified  or 
calibrated, and

– hardware  metrics  are  provided  at  coarse 
resolution in time and unit.

We  also  investigated  several  specifications  for 
reporting  sensor  data  in  an  attempt  to  find  suitable 
concepts  for  HPC  data.   Finally,  we  propose  a 
taxonomy for  collecting  system monitoring  data  that 
accommodates heterogeneous sources.   
   The  paper  is  organized  as  follows.   After  this 
introduction,  Section  2  reviews  system  monitoring 
tools  with  a  focus  on  their  data  collection  aspect. 
Section  3  contains  a  description  of  our  collection 
effort,  the  architecture,  and  the  implementation  of 
DCAT, our collection tool.  Section 4 presents a review 
of  available  mechanisms  for  obtaining  data  from 
embedded sensors and existing standards that could be 



used to organize this data.  In Section 5 we present our 
taxonomy for storing data independently of its source. 
Section 6 concludes with further research plans.  

2.  Related work

     Many proprietary and open-source tools for system 
monitoring in HPC are available, including OVIS, an 
advanced  prediction  and  analysis  tool  aimed  at 
discovering targets for check-pointing in nodes about 
to fail [5, 6].  Ganglia, a widely used tool [7] can report 
on temperatures  and other  metrics  for  a  limited time 
and on a per-metric basis.  Thus, it has little value for 
forensic analysis.  Data collectors have been written for 
OVIS,  that  capture  low-level  data  from  lm-sensors, 
proc/  files,  and other  sources [5].   SMARTMON [8] 
controls  and  monitors  disk  storage  and  is  built  into 
most modern disks, but we are also interested in core 
temperatures and other metrics pertaining to CPU.  The 
Sisyphus  system  uses  latent  semantic  indexing  to 
discover rare, correlated events in the high volume of 
messages  reported  in the system logs at  the extreme 
scale. [9, 10]
   These  tools  represent  very  important  efforts  for 
analyzing the health of systems in clusters and clouds 
and for trying to predict the next failure, but they do 
not foster the sharing of information and methodology 
that  would  ensure  the  emergence  of  standard 
descriptions of Reliability,  Availability,  Serviceability 
(RAS) events  recommended in [1,  2].   In  particular, 
one has to dig deep into hardware specifications and 
software documentation or implementation to find what 
metrics  are  actually  reported  and  used  to  make  a 
prediction in each tool.   Given that  one  purpose  of 
most of these tools is to facilitate system management 
of  large  systems,  they  are  designed  to  mask  the 
complexity of the low-level details from the end user, 
so the latter is not surprising.  However, this situation 
makes it difficult to establish common definitions and 
specification for metrics.
   Some  data  models  and  definitions  exist  for 
organizing HPC health metrics.   Stearley proposes  a 
State  Model  derived  from  a  semi-conductor 
specification  defining  reliability  (SEMI  FE10-0304). 
This model describes the state of a system in terms of 
its  scheduled  and  non-scheduled  downtime, 
engineering  and  production time,  standby time,  and 
characterizes  failure  as  “ANY  transition  into 
unscheduled  downtime.”  [9].   These  definitions 
represent a step in the right direction, but do not appear 
to being used elsewhere. 
    

3. Data collection, architecture, and 
prototype implementation

       
     For our case study, we were able to use as testbed a 
32-nodes cluster with HP motherboards, and two quad-
cores,  AMD Opteron 2356,  with 16G of RAM each, 
for  a  total  of  256  processors.   Networking  is 
implemented  by  two  Myrinet  switches,  two  10GE 
cards, and two DDR IB cards.  
     Our tool collects physical parameter data, such as 
temperatures and fan rpms.  Our application can read 
data from lm-sensors [11] and the Intelligent Platform 
Management Interface (IPMI) [12].  In our case-study, 
we  obtained  six  temperature  readings  and  six  fan 
readings per node, located as follows:  

• Temp 1:  System board.  
• Temp2 : CPU socket 1.
• Temp3:  CPU socket 2.
• Temp4:  System  board  Temperature  located 

under the power supply cage.
• Temp5:  System board Power Supply.
• Temp6:  System board Temperature. 
• Fans  1-6:  Two  System  Internal  Expansion 

Board  fans and  4 CPU Fans.  
DCAT also collects data from /proc/cpuinfo, /proc/stat, 
and  /proc/meminfo  for  memory  statistics  and  CPU. 
The collected data for system state is as follows:

• Cpu  usage:  recorded  in  jiffies  from which 
percentages can be calculated per core.

• Cpu idle time: same as above.
• Cpu average usage per node.
• Cpu average idle time per node.
• System or node uptime.
• Memory total:  total  usable  memory on  the 

system.
• Memory free: Amount of free memory.
• Memory cached: Amount cached on disk.
• Memory active: Amount of recently used.
• Memory  inactive:  Amount  of  inactive 

memory that can be freed or cached.
• High  memory  total:  Total  amount  of  high 

memory:  anything above 896MB on 32-bit 
machines.  Not used for 64-bit. [13]

• High memory free: Amount of unused high 
memory.

• Low  memory  total:  total  amount  of  low 
memory that the kernel can access directly. 
[13]

• Low-free:  Amount of unused low memory.
• Swap-total: Total usable swap space.
• Swap-free: Amount of unused swap space.



     Our prototype architecture is composed of a client-
server engine, a MySQL database, and communication 
mechanisms  shown  in  Figure  1.   For  ease  of 
implementation,  the  prototype  communication  layer 
uses Message Passing Interface.  The data is accessed 
by a customized module for each source.   The client 
processes the data into a structure and pushes it to the 
DCAT server for uploading into the database.  
    DCAT runs on an arbitrary number of nodes, with 
the nodes split up into separate groups.  Each group has 
a server process that collects sensor data from all the 
nodes in its group.  The server process in each group 
uploads the collected data to a database that resides on 
another  system.  The  client  nodes  are  configured  to 
push data  at  the same interval  as  the server  process 
uploads  data.   The  main  reason  for  the  current 
configuration is the fact that our compute nodes do not 
all have local disks installed.  
    We have been able to collect data from our testbed 
for  over  a year.   However,  a  major  drawback of the 
implementation is  the use of MPI:  if  one node  fails, 
then the entire program fails.  This is a common pitfall 
when using MPI.   In  order  to address this issue,  we 
plan to use sockets for the communication layer in the 
next implementation.  Using sockets, we can implement 
the same group architecture, but check for a reply when 
sending data to the server process.  If the client nodes 

cease to receive a reply from the group server, the next 
node spawns a server process to take over.
   In about one month of data collection on a 32-node 
cluster,  we have obtained about  1.5  GB of data,  the 
bulk  of  it  consisting  of  time-series  at  one  minute 
intervals.  Given the data model structure, static data, 
such as IP addresses, names and hardware descriptions, 
are  collected  only  once.    With  twenty-two  sensor 
values and eight memory statistics values per node, this 
amounts to 30 million sensor values and one million 
memory  statistics  values.   No  log  data  is  presently 
collected by our system except for indicating the latest 
reboot. 
  Our  collection  effort  showed  that  the  number  of 
temperature and fan values reported by IPMI and lm-
sensors depends on hardware implementation.  So does 
location,  which  may  be  important  for  detecting 
anomalies and error correlation in HPC.  The type of 
sensors a platform is instrumented with also depends 
heavily  on  hardware  configuration.   For  instance, 
although  our  platform  was  IPMI-compliant,  and 
reported some metrics through IPMI, we were unable 
to  collect  voltages,  which others  have collected with 
IPMI.  Our collection module collects temperatures and 
fan data data every minute.  
  Our example implementation has illustrated some of 
the  challenges  encountered  while  collecting  metrics 
related to system health.  To better understand what is 
actually available for system instrumentation and health 
monitoring, we now review available data sources.

4.  Data  sources  and  standards  for 
sensor data representation
4.1.  Data sources
 
     Linux monitoring sensors (lm-sensors) is a well-
known open source utility for sensor data acquisition. 
Starting  with  Linux  kernel  2.5,  lm-sensors  are 
packaged  with most  distributions.   lm-sensors  report 
temperature,  voltage,  and  fan  rpm data.   The  utility 
depends on the community to write drivers for boards 
and  platforms,  which  can  be  slow  for  new  models. 
Metadata  in  lm-sensors  is  somewhat  explicit,  with 
variable  names  such  as  VCore  (voltages  with  a 
minimum and  maximum),  CPU Fan 1,  Front  Fan  3, 
coretemp Core 0, coretemp Core 1, etc.  A driver for 
IPMI exists but it was more efficient to capture data at 
the source. 
     IPMI is an open-source specification sponsored by 
Dell, HP, NEC, Intel, and implemented in proprietary 
tools  and  an  open-source  tool.  Its  main  engine,  the 
Baseboard  Management  Controller,  coordinates 
messages  from  on-board  sensors  and  communicates 
Sensor Data Records  to  the Sensor  Data Repository.
[14]  IPMI operates at the BIOS level, and is intended 

Figure 1.  DCAT Architecture Diagram.



for integration into system management tools.   Many 
manufacturers  (but  not  all)  have  adopted  IPMI  and 
deploy  their  sensors  with  IPMI  drivers.   IPMI 
essentially  reports  temperatures,  voltages,  and  fan 
rpms, depending on the platform.  For those interested 
in using IPMI data, without system management tools, 
attributing  measurements  to  a  particular  temperature 
sensor  or  fan on a board  is  a  matter  of guess work, 
since IPMI returns data such as Temp 1, Temp 2, Temp 
3,   Fan 1,  Fan 2,  Fan 3,  etc.   The  sensors  listed  in 
Section 3 for our testbed were provided through a long 
chain of emails to a direct contact at the manufacturer. 
IPMI is not  supported  by Cray,  Inc  who utilizes  the 
Cray  RAS and  Management  System.   IPMI  reports 
temperatures as integers in Celsius, which is not quite 
sensitive  enough  to  detect  rapidly  rising  trends  and 
allow enough margin for corrective action.
  For  our  case-study,  we  also  procured  Sun  Small 
Programmable  Objects  (SunSPOTS)  [15]  and 
instrumented  the  room where  our  testbed  is  located. 
SunSPOTs are self-contained sensor devices, powered 
by mini-USB and communicating with a base station 
through a  radio  connection  at  2.4  GHz.   SunSPOTs 
operate  in  unlicensed  bands  at  high  frequencies,  on 
channels 11-26.  A SunSPOT base-station exports its 
data to the system where it is mounted via USB port. 
Data communication between a SPOT and its base is 
encrypted.  By default, SunSPOTS are equipped with a 
light  and  temperature  sensors.   By  placing  them at 
strategic locations, for instance under a power unit, or 
on top of a switch, it is possible to obtain temperature 
data  at  the  location,  thus  providing  a  basis  for 
comparison with other methods such as IPMI or  lm-
sensors.    SunSPOTs  claim  a  range  of  70  meters 
between base station and SPOT, but due to the strong 
interfering  frequencies  in  the  machine  room, 
approximately thirty feet was the maximum range we 
obtained.  As of version 6.0, SunSPOTs do not support 
64-bit,  which can  make it  inconvenient  to  use.   For 
SunSPOT data,  we use the SunSPOT API to upload 
data to a database residing on a 32-bit system hosting 
the base station.  
  Our investigation of data sources for system health 
metrics  showed  that  these  are  system-dependent  and 
that data representation must be tailored to the source. 
In the following section, we present our investigation 
of  open  source  sensor  data  representation  in 
communities other than  HPC where sensors are used, 
in order to find standard representations.  

4.2.  Standards  for  sensor  data 
representation   
   
     We have examined in details open source standards 
for  sensor  information  processing  describing  sensor 

data information in [16].  The proliferation of sensor 
manufacturers and usages in many fields of science and 
industry  have  raised  multiple  challenges  for  data 
collection  and  processing.   When  data  fusion  from 
heterogeneous sensors and interoperability are desired, 
standards become advantageous.  
    We  hereby  discuss  standards  and  specifications 
developed  by  the  IEEE,  the  Open-Geospatial 
Consortium (OGC), the Distributed Management Task 
Force (DMTF), and the Intelligent Platform Modeling 
Initiative  (IPMI),  an  Intel-led  effort  at  standardizing 
hardware-related metrics. 
    IEEE 1451 is a specification enabling data transfer 
to a network and the remote operation of sensors [17]. 
These “smart  sensors” transfer  data about themselves 
and  their  payload  using  Transducer  Electronic  Data 
Sheets (TEDS).  TEDS are generic data structures, four 
TEDS per  service are  required  while optional  TEDS 
are  also  available.   Details  on  this  standard's 
architecture are available in [16 and 17].   IEEE1451 
contains  instructions  that  sensor    manufacturers  can 
use  for  standardizing  their  data  transfer  protocols. 
IEEE1451 also defines four Application Programming 
Interfaces (API) using the HTTP1.1 protocol.  Thus an 
IEEE1451-compliant  sensor  provides  data  directly 
usable by other applications that conform to the IEEE 
1451 model or to applications communicating by http. 
However, sensor manufacturers for HPC environments 
do not use IEEE 1451, and connectivity between nodes 
does not use Internet protocols.
  The  OGC  standards,  including  Sensor  ML, 
Transducer  Model  Language,  and  Sensor  Web 
Enablement,  contain  very  rich  metadata  for 
characterizing sensor data, with a special emphasis on 
location due to its origin in the geo-spatial community. 
[18]  SensorML describes  sensor  systems,  processing 
algorithms  and  workflows  and  can  encode  the  on-
demand  execution  of  algorithms  for  remotely 
controlling sensors. [19] However, OGC sensor models 
are also designed for sensor data and command transfer 
over the Internet.   
    The DMTF [20] is an industry organization leading 
the  development  of  management  standards  and 
infrastructure components for instrumentation, control 
and  communication  in  Enterprise  and  Internet 
environments.   In particular, the Common Information 
Management  (CIM)  and  Common  Diagnostic 
Management specifications [21] contain many entities 
that can be used for a data model, including classes for 
metrics, and events, and profiles for sensors and power 
management.  CIM and other DMTF technology was 
designed to unify the management of information for 
desktops,  servers,  storage,  communications,  and  data 
centers.   The  open  source  Standards  Based  Linux 
Instrumentation  for  Manageability  [22]  has  been 



developed  by  IBM  around  the  CIM  standard  but  it 
relies on Web-based Enterprise Management.  

5.  Taxonomy
  
     Following the example of the OGC Sensor Web 
Enablement effort, we designed a data model based on 
the abstraction of a “sensor”.  In SensorML, a sensor is 
a process that converts real phenomena into data. Every 
data point is referenced to a “sensor,” which can be an 
actual sensor like a thermistor, a physical object like a 
fan,  or  a  process  that  collects  system state  data  like 
CPU usage.   This abstraction is  advantageous to our 
purpose because a process is a basic unit in computing 
and the output of a process is data.  We use sensor to 
represent  temperature  sensors,  fans,  voltmeters,  but 
also CPU, where the data is the amount of CPU used at 
a particular time point.
  Our data model includes five objects: sensor, system, 
measurement,  memory  statistics,  and  unit.   The 
measurement  object  contains  data  from  all  physical 
parameters and includes CPU usage.  The content  of 
this object is highly dynamic.  The memory-stats object 
contains  values  related  to  memory.   This  object 
contains both static and dynamic data.  Because of the 
amount  of  static  information  related  to  memory  (as 
seen in Section 3), we did not treat it as a sensor and 
kept it separate. Both objects have a time stamp.  The 
sensor, system and unit objects contain static data that 
change only if the physical configuration of the system 
changes.   Preserving  system-state  and  configuration 
parameters are needed for forensic root-cause analysis 
of failures. 

6. Conclusion and Future Work
  
     We presented our data collection effort for a 32-
node, quad-core testbed to illustrate the heterogeneity 
of data sources reporting on system-health in HPC and 
the lack of standards in data representation.  We found 
that even for platforms that purportedly comply with a 
widely-used  manufacturer  specification  (IPMI), 
instrumentation does not report  all  the metrics that it 
claims to report.  We also found that the description of 
the reported data (the metadata) can be very thin and 
that  the  units  can  be  too  coarse  for  spotting  trends 
(integer delta in Celsius).
We investigated  sensor  data  representation  standards 
used in other fields with the purpose of finding entities 
and/or concepts that could be used in HPC.  We found 
that the abstraction of “sensor as process” designed for 
SensorML to be advantageous but insufficient to hold 
all the needed metrics.  
   Future work includes the study of the metrics and 
event classes in the CIM specifications with the goal of 

testing them for HPC.  The addition of system logs to 
our  data  collection  may  also  require  adapting  our 
taxonomy.  
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