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ABSTRACT 

Energy Delivery Systems (EDS) have become smarter by 

incorporating chips and data communication capabilities. As a 

result, they have become more vulnerable to cyber-attacks as well. 

As part of a systems health monitoring approach, we investigate 

whether cyber-events targeting EDS can be detected by 

monitoring component-level data such as temperature, voltage, 

power, and process indicative variables―collectively referred to 

as component health indicators. We report our experiences with 

developing a measurement framework for power consumption in 

different EDS components such as Cabinet Distribution Units 

(CDU), Power Distribution Units (PDU), and standard enterprise 

desktops. Our plan for gathering and analyzing power 

consumption data involves establishing a baseline execution 

profile and then capturing the effect of perturbations in the state 

from injecting various malware. As a contribution, we report on 

initial experiments with power measurement techniques and 

outline future work for evaluating components under normal and 

anomalous operating regimes. 

Categories and Subject Descriptors 

B.8.1 [Hardware]: Performance and reliability – Reliability, 

Testing, and Fault-Tolerance. K.6.5 [Management of 

Computing and Information Systems]: Security and Protection 

– invasive software, unauthorized access. 

General Terms 
Measurement, Performance, Design, Reliability, Experimentation, 

Security. 

Keywords 

Energy Delivery Systems, malware, rootkits, cyber-attacks, Power 

Distribution Unit, Cabinet Distribution Unit, Simple Network 

Management Protocol. 

 

1. INTRODUCTION 
Millions of software-controlled, networked devices are being 

deployed as part of the next-generation EDS [1]. These systems 

and their embedded software are critical to the reliable operation 

of the North American power grid [2].  In our context, EDS are a 

network of processes that produce, transfer and distribute energy. 

The most common EDS examples are Supervisory Control and 

Data Acquisition (SCADA) and the Distributed Control Systems 

(DCS).  EDS have become smarter by incorporating chips and 

data communication capabilities. As a result, they have become 

more vulnerable to cyber-attacks as well. The electrical power 

system has always been a high priority target for military and 

insurgents [3]. Attacking power plants, including substations and 

hydroelectric facilities is a normal part of guerilla warfare [3].  

Cyber attack of EDS systems was first introduced in 2010 through 

the Stuxnet computer worm, the first to include a Programmable 

Logic Controller rootkit to industrial devices [4]. 

Collecting and analyzing machine health data is already of great 

importance in monitoring power consumption, improving 

resource management and scheduling, and refining application 

signatures for intrusion detection. Machine health data also offers 

new possibilities for detecting anomalous events, especially 

execution of malicious software, which would reduce 

vulnerabilities in EDS systems across the board. We describe the 

set-up of an experimental environment and data collection 

framework to evaluate possibilities for cyber event detection. We 

relate the technical details of our approach, the encountered 

challenges, and preliminary results. As a key contribution, we 

show the use of tools for monitoring and gathering health profiles 

in the context of anomaly detection, outside their traditional uses 

for enhancing EDS reliability and efficiency.  

The paper is organized as follows: section 2 describes related 

work in hardware measurement and section 3 details our 

experimental approach for incorporating power measurement data 

in cyber event detection applications. Section 4 gives data 

collection results using software-based application programming 

interfaces (APIs) related to hardware-based sensors and section 5 

describes our data collection activity with aggregate power 

monitoring devices such as CDUs and PDUs that provide Simple 

Network Management Protocol (SNMP) support. Section 6 

includes our conclusions and future research goals. 

2. RELATED WORK 
In traditional applications, hardware measurements are collected 

and analyzed to understand the behavior of computer systems 

with regard to their time to failure (reliability) and for the purpose 

of monitoring power consumption (green computing or power 
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profiling). The reliability literature shows that hardware data 

collection methods are diverse and platform dependent [5].  In the 

absence of root-cause analysis, studies disagree on attributing 

failures to hardware, software or other causes [6].  Board, core or 

disk temperatures correlate to failures in some studies but not 

others [7,8]. Some systems collect hundreds of variables per node, 

analyze on the fly, and save only analysis results, thus preventing 

comprehensive forensics or reuse of their data [9,10]. Hsu and 

Poole in [11] detail state of the art in power measurement and 

classify hardware monitoring methods from node component level 

to facility. Currently, power consumption of high performance 

computer systems is closely monitored to develop power-aware 

job schedulers and reduce energy costs.  

Cui et al. [12] report results related to power profiling and energy 

consumption in modern computers that bear on cyber event 

detection research. Their approach involves a uniquely built 

sensor device measuring individual component power. The 

method synchronizes measured power data with application code, 

demonstrating how program phases can be tracked. Their results 

show that power fluctuation is very rapid and demands fairly high 

sampling rates (50 KhZ) for fine grain analysis. 

Buennemeyer et al. [13] propose a Battery Sensing Intrusion 

Protection System (B-SIPS) for mobile computers. The detection 

capability is scalable and compatible with existing commercial 

and open Intrusion Detection System (IDS). This implementation 

correlates device power consumption data with IEEE 802.11 Wifi 

and 802.15.1 Bluetooth communication. To detect the presence of 

malware they are using an unexplained increase in the current 

drawn from a device's battery. 

When put in the context of the Stuxnet attack, Cui and 

Buennemeyer’s research highlight the need to detect anomalies in 

EDS performance.  Initially spread via Microsoft Windows, and 

targeting Siemens Industrial hardware and software, Stuxnet 

operates in two stages: first, it uploads configuration information 

about the Siemens system to a command-and-control server; and 

second, uses a rootkit on a target to alter its functions [4].  

Our effort involves developing a power measurement framework 

for cyber event detection.  The purpose is to determine if malware 

attacks can be detected from power consumption data such as 

voltage and current.  

3. EXPERIMENTAL APPROACH 
The goal of our research is to determine if cyber-events affecting 

EDS components can be detected through installed sensors and 

continual monitoring of temperature, voltage, power, and other 

component level indicators. The research effort is allocated into 

three phases: 1) baseline characterization; 2) perturbation 

experiments; and 3) algorithmic analysis. Our aim is to establish 

profiles for aggregate and component level measures that will 

enable us to investigate potential effects of perturbations caused 

by malicious software such as viruses, rootkits, Trojans, and 

backdoors. After data collection, we will employ anomaly 

detection and characterization algorithms to determine if the 

attacks are visible or not in component power profiles.  In this 

paper we report initial results in configuring the data collection 

framework that will support the research phases. Our initial 

experiments use standard desktop personal computers for the 

testbed environment. 

Our approach creates baseline profiles under two separate load 

regimes. The first regime involves monitoring and recording EDS 

component behavior with normal operating system and kernel 

level processes.  The second regime involves execution of various 

algorithms and applications that stress CPU, memory, cache, and 

disk. Our EDS target uses a clean installation of 32-bit Windows 7 

Enterprise. The clean installation assumes no malware is 

introduced through the operating system (OS) installation process. 

Once we record baseline component health data, we will infect 

EDS components with functionally-profiled malware. The 

functional profile can be obtained by using custom-made rootkits 

where the behavior is known in advance. Our initial perturbation 

experiments will use rootkits, which are programs that operate 

typically with kernel level privileges and hide key indicators of 

their presence from the host OS. Rootkit behavior varies based on 

what goals they are designed to achieve. Some rootkits can install 

key-loggers or provide backdoors for later nefarious purposes; in 

general, they provide access for unauthorized users of a system 

[2].  

Malware injection will allow us to create perturbation profiles 

consistent with the baseline profiles. While the infected EDS 

target is running, we will collect EDS component health data 

under the same load regimes as the baseline profiles: first, using 

normal OS processes, and second, using specific algorithms with 

particular performance characteristics. Statistical analysis follows 

data collection activities. The analysis methods will compare the 

baseline and perturbation profiles to determine if cyber-events or 

intrusion can be detected.  

4. HARDWARE SENSOR APIs 
Many modern processors now come with standard hardware-

based sensors built into the motherboard that report system level 

information such as temperature, power, and processor statistics. 

For older EDS components, these sensors may not be present.  

Without the appropriate sensors, APIs that query the hardware for 

data will not work correctly.  Discovering whether or not such 

sensors exist onboard can be a challenging task: we used several 

different tools to determine if sensors are present and our initial 

experiments utilized three standard API packages: IPMItools, lm-

sensors, and sensord. 

4.1 IPMItools 
IPMItools is a utility for managing and configuring devices that 

support the Intelligent Platform Management Interface (IPMI).  

IPMI is a computer system interface used by system 

administrators to manage computer systems and monitor their 

operations. IPMI coordinates messages from on-board sensors and 

communicates Sensor Data Records (SDR) to the Sensor Data 

Repository [5]. Depending on the platform, IPMI essentially 

reports temperatures, voltages, and fan revolutions per milli-

second (rpms).   

We note that this tool attributes measurements to a particular 

temperature sensor or fan on a board [5]. For example IPMItools 

will return data such as Temp1, Temp2, Temp3, Fan1, etc. The 

tool also reports temperature data as integers in Celsius, making it 

less sensitive to capture rapidly rising trends and disallowing 

margins for corrective action [5]. IPMItools was installed in the 

Ubuntu OS environment. The command sudo ipmitools sdr list 

detects if a system is compatible with IPMItools and returns all 

the sensors embedded in the system. Sensor values at the moment 

of execution and the Sensor Data Record (SDR) list are also 

returned. . A sensor data record repository provides the properties 

of the sensors located on the board. This procedure was done in 

three standard enterprise desktops but no sensors were found. 

Therefore using standard enterprise desktops for gathering the 

power consumption data was discarded as we discovered that our 

PC testbeds were not compatible.  



 
 

Figure 2. Results of ipmitools SDR list command. 
 

 

We installed IPMItools in a cluster computing environment at 

Oak Ridge National Laboratory (ORNL) using the same 

command.  Figure 2 shows the sensors that were detected in the 

cluster. The next section defines lm-sensors, why it was used, and 

what the obtained results were after using this tool. 

4.2 lm-sensors 
Lm-sensors is an open-source tool compatible with Linux 

distributions. It detects the sensors that are embedded in the 

motherboard of any machine. To install this tool in an Ubuntu 

machine, we use the command sudo apt-get install lm-sensors, 

and to execute the tool we use the command sensors. Figure 3 

illustrates typical results from the sensors command. 

 

Figure 3. Results of sensors command. 

As figure 3 illustrates, the temperature of the cores of the EDS 

component are displayed. Because these measurements only 

report precision at one decimal place and because the tool reports 

one variable (the CPU core temperature), we conclude that it is 

not useful for future cyber event detection experiments. 

4.3 sensord 
Sensord is a daemon that is part of the lm-sensors suite. This tool 

used a round-robin database (RRDtool) to monitor and plot the 

data in real-time. A round-robin database is a high performance 

data logging and graphing system for time series data. Figure 4 

shows the results of the core temperature measurements from the 

same EDS component shown in figure 3. This tool allowed us to 

verify the format of data and characterize options for plotting. In 

the end, the format of the data was the same as lm-sensors and we 

deemed it insufficient for the collection framework.  

 

Figure 4. Typical sensord data results. 

5. AGGREGATE POWER MEASURES 
High performance computing centers use power monitoring 

devices that provide management features for operators.  Because 

they are easily acquired and installed at a reasonable price, we 

evaluated whether such devices could detect cyber events in 

power measurement applications. 

5.1 Power Distribution Units 
A Power Distribution Unit (PDU) is a device with multiple 

outputs designed to distribute electric power. There are two major 

classes of PDU; the first one corresponds to the category of 

relatively higher-cost floor-mounted power distribution devices 

and the second class corresponds to smaller device.   

In our experiments we used a rack PDU switched, a device from 

the first class. The router provides access to the collected data. 

However the minimum sampling rate was once per minute. Our 

experiment requires the option to modify the sampling rate. 

Therefore, using the PDU was not an option. 

5.2 Cabinet Distribution Units 
A cabinet distribution unit (CDU) is a device for power 

monitoring. CDUs typically provide Simple Network 

Management Protocol (SNMP) interfaces to monitor, track and 

manage servers and IT equipment and the cabinet infrastructure 

that house them. We used the Sentry CWG-8H1 Switched CDU to 

measure power consumption data of two experimental machines. 

The CDU provides per outlet power sensing (POPS) data such as 

power (in watts), current (in amps), and the voltage of the devices 

that are plugged into it. Configuring CDUs is simple: plug a 

monitored device into the CDU, connect the CDU via Ethernet to 

a network appliance, and connect a monitoring collection machine 

(PC) via Ethernet into the same network appliance. However, 

finding a monitoring tool that will support reasonable data 

sampling rates and provide data export capabilities is a more 

challenging task. By default the settings and data extracted from 

the CDU can be accessed by interfacing with default IP of the 

device (192.168.1.254). Communication between the monitoring 

PC and CDU depends on configuring the SNMP settings 

correctly. Correct configuration was achieved but SNMP 

collection tools (either open source, commercial, or custom) are 

still required. 

5.3 SNMP Collection Tools 
Simple Network Management Protocol (SNMP) is an application 

layer protocol used to manage network resources. This 

standardization gives network administrators the ability to 

monitor network performance [14]. There are hundreds of SNMP 

management tools that can interface with a CDU, however most 

of them support network administration and management tasks 

(not higher precision or higher frequency data collection). We 

evaluated three tools to see if they were applicable for our cyber 

defense power measurement framework: Loriot Pro, Solarwinds 

Workspace Studio, and Sentry Power Manager from Server 

Technology.   

Loriot Pro met many of our requirements: it detects all CDU 

devices in the network and has built-in performance monitoring 

for connected machines. However, we were unable to extract the 

power consumption data from the CDU via the standard SNMP 

configuration options.  

Solarwinds Workspace Studio allows monitoring CPU and 

memory usage for attached machines, but does not support power 

measurement. Sentry Power Manager is an SNMP management 

tool that runs on Linux installations. Using Sentry Power 

Manager, we obtained power consumption data with more than 

three decimal places from monitored devices, an improvement 

over other devices we tested. But the sampling rate was every 6 

minutes, lower than that of other devices. The following section 



explains the system set-up for monitoring and gathering the power 

consumption data.  

5.4 Experimental Configuration 
The network configuration involved 1) the experimental machines 

(for baseline and perturbation experiments); 2) a data collection 

machine; 3) a network switch; and 4) the CDU. The collection 

machine uses SNMP to extract data from the CDU and exports the 

data into a CSV file. Figure 7 illustrates our configured network. 

We used both Ubuntu and Windows for the data collection 

machines and 32-bit Windows 7 Enterprise for the experimental 

machines. 

 

Figure 7. Data collection network 

Figure 8 illustrates data collection from experimental machines 

connected to the CDU. Our collection configuration is ideal 

because it allows us to perform unobtrusive observation of 

machines in baseline operating regimes. It also allows 

perturbation observation using malware injection without the need 

for virtualization and without danger of infecting the collection 

machines and network. 

 

Figure 8. CDU monitored power for experimental machines. 

6. CONCLUSIONS and FUTURE WORK 
A key objective of our research involves developing a power 

measurement framework that can support experiments related to 

anomaly detection for cyber events, particularly execution of 

malicious software. We setup a test network and evaluated 

efficacy of several power measurement techniques, including 

hardware-based sensor APIs and aggregate power measurement 

tools for CDUs.  

Of all the tools tested, the only tool that allowed us to gather and 

export the power consumption data was the Sentry Power 

Manager. This tool allowed us to gather the data with more than 

three decimal places and supported data export in extensible 

markup language (XML) format. But the sampling rate supported 

through standard SNMP tools was insufficient for our purposes. 

Our initial goal was 200 samples per second using general 

purpose tools. Our ultimate goal will require specialized, 

component-level monitoring tools that can support higher 

sampling rates.  

After running initial tests with both hardware sensor API suites 

and CDU/SNMP tools, we conclude the following: 

 Custom SNMP data collection software is required to extract 

the power consumption data at an appropriate sampling rate 

from CDUs. 

 Hardware-based sensor API suites require the collection 

machine and monitoring machine to be one in the same, 

causing the collection to affect overall power readings.  

Some motherboards do not have built-in sensors and some 

tools do not work with sensors in a universal manner.  

Our future work will continue to evaluate power collection 

techniques to find the right balance of cost, availability, sampling 

rate, and precision.  
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