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ABSTRACT
The increase of the complexity and advancement in ecolog-
ical and environmental sciences encourages scientists across
the world to collect data from multiple places, times, and
thematic scales to verify their hypotheses. Accumulated
over time, such data not only increases in amount, but also
in the diversity of the data sources spread around the world.
This poses a huge challenge for scientists who have to man-
ually search for information. To alleviate such problems,
ONEMercury has recently been implemented as part of the
DataONE project to serve as a portal for accessing envi-
ronmental and observational data across the globe. ONE-
Mercury harvests metadata from the data hosted by mul-
tiple repositories and makes it searchable. However, har-
vested metadata records sometimes are poorly annotated
or lacking meaningful keywords, which could affect effective
retrieval. Here, we develop algorithms for automatic anno-
tation of metadata. We transform the problem into a tag
recommendation problem with a controlled tag library, and
propose two variants of an algorithm for recommending tags.
Our experiments on four datasets of environmental science
metadata records not only show great promises on the per-
formance of our method, but also shed light on the different
natures of the datasets.

Categories and Subject Descriptors
H.3.3 [Information Search and Retrieval]
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Document Annotation, Tag Recommendation, Topic Model

1. INTRODUCTION
Environmental sciences have become both complex and

data-intensive, needing access to heterogenous data collected
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from multiple places, times, and thematic scales. For exam-
ple, research on bird migration would involve exploring and
analyzing observational data such as the migration of ani-
mals and temperature shifts across the world, from time to
time. While the needs to access such heterogenous data are
apparent, the rapid expansion of observational data, in both
quantity and heterogeneity, poses huge challenges for data
seekers to obtain the right information for their research.
Such problems behoove tools that automatically manage,
discover, and link big data from diverse sources, and present
the data in the forms that are easily accessible and compre-
hensible.

1.1 ONEMercury Search Service
Recently, DataONE, a federated data network built to fa-

cilitate accesses and preservation about environmental and
ecological science data across the world, has come to ex-
ist and gain increasingly popularity[16]. DataONE harvests
metadata from different environmental data providers and
make it searchable via the search interface ONEMercury1,
built on Mercury2, a distributed metadata management sys-
tem. Figure 1 shows sample screen shots of the ONEMer-
cury search interface (left) and the search result page with
search query ‘soil’. ONEMercury offers a full text search on
the metadata records. The user can also specify the bound-
ary of locations in which the desired data is collected or
published using the interactive graphic map. At the result
page, the user can choose to further filter out the results by
Member Node, Author, Project, and Keywords. The set of
keywords used in the system are static-users cannot arbitrar-
ily add new or remove the existing keywords- and managed
by the administrator to avoid the emerging of spuriously new
keywords. Such keywords are used for manually annotating
metadata during the data curation process.

1.2 Challenge and Proposed Solution
Linking data from heterogenous sources always has a cost.

One of the biggest problems that ONEMercury is facing
is the different levels of annotation in the harvested meta-
data records. Poorly annotated metadata records tend to
be missed during the search process as they lack meaningful
keywords. Furthermore, such records would not be compat-
ible with the advanced mode offered by ONEMercury as it

1https://cn.dataone.org/onemercury/
2http://mercury.ornl.gov/



Figure 1: Screen shots of the ONEMercury search interface and result page using query ‘soil’.

requires the metadata records be annotated with keywords
from the keyword library. The explosion of the amount of
metadata records harvested from an increasing number of
data repositories makes it even impossible to annotate them
manually by hand, urging the need for a tool capable of
automatically annotating these metadata records which are
poorly annotated.
In this paper, we address the problem of automatic anno-

tation of metadata records. Our goal is to build a fast and
robust system that annotates a given metadata record with
related keywords from a given keyword library. The idea is
to annotate a poorly annotated record with keywords asso-
ciated to the well annotated records that it is most similar
with. We propose a solution to this problem by first trans-
forming the problem into a tag recommendation problem
with a controlled tag library, where the set of recommended
tags is used to annotate the given metadata record, and then
propose an algorithm that deals with the problem.

1.3 Problem Definition
We define a document as a tuple of textual content and

a set of tags. That is d = <c, e>, where c is the textual
content, represented by a sequence of terms, of the document
d and e is a set of tags associated with the document. Given
a tag library T , a set of annotated documents D, and a
non-annotated query document q, our task is to recommend
a ranked set of K tags taken from T to the query q. A
document is said to be annotated if it has at least one tag;
otherwise, it is non-annotated. The formal description of
each variable is given below:

T = {t1, t2, ..., tM} ; ti is a tag.

D = {d1, d2, ..., dN} ; di = ⟨cdi, edi⟩ , edi ⊆ T, and edi ̸= ⊘
q = ⟨cq,⊘⟩

1.4 Contributions
This paper has four key contributions as follows:

1. We address a real word problem of linking data from
multiple archives faced by ONEMercury. We trans-
form the problem into the tag recommendation prob-
lem, and generalize the problem so that the proposed
solution can further be applied to other domains.

2. We propose a novel technique for tag recommenda-
tion. Given a document query q, we first compute
the distribution of tags. The top tags are then recom-
mended. We propose two variants of our algorithms:
term frequency-inverse document frequency (TF-IDF)
based and topic model (TM) based.

3. We crawl environmental science metadata records from
4 different archives for our datasets: the Oak Ridge Na-
tional Laboratory Distributed Active Archive Center
(DAAC)3, Dryad Digital Repository4, the Knowledge
Network for Biocomplexity (KNB)5, and TreeBASE:
a repository of phylogenetic information6. We select
roughly 1,000 records from each archive for the exper-
iments.

4. We validate our proposed method using aggressive em-
pirical evaluations. We use document wise 10 fold cross
validation to evaluate our methods with 5 evaluation
metrics: Precision, Recall, F1, MRR (Mean Reciprocal
Rank), and BPref (Binary Preference). These evalua-
tion metrics are extensively used together to evaluate
recommendation systems.

3http://daac.ornl.gov/
4http://datadryad.org/
5http://knb.ecoinformatics.org/index.jsp
6http://treebase.org/treebase-web/home.html



5. We make our datasets and source code available upon
request for research purposes.

2. RELATED WORKS
Literature on document annotation is extensive. Hence

we only present the work closely related to ours.

2.1 Automatic Document Annotation
Newman et al.[18] discuss approaches for enriching meta-

data records using probabilistic topic modeling. Their ap-
proach treats each metadata record as a bag of words, and
consists of 2 main steps: i) generate topics based on a given
corpus of metadata, ii) assign relevant topics to each meta-
data record. Hence a metadata record is annotated by the
top terms representing the assigned topics. They propose 3
variations of their approaches. The first method, which they
use as the baseline, uses full vocabulary (every word) from
the corpus. The remaining two methods filter out the vocab-
ulary by deleting useless words resulting in more meaningful
topics. They compare the three approaches in 3 aspects: %
of usable topics, % enhanced records, and average coverage
by the top 4 chosen topics. They acquired the datasets from
700 repositories, hosted by OAISter Digital Library. The
results show that, overall, the second method performs the
best. However, such method requires manual modification
of the vocabulary, hence would not scale well. The third
method performs somewhere in between.
Bron et al.[4] address the problem of document annotation

by linking a poorly annotated document to well annotated
documents using TF-IDF cosine similarity. One corpus con-
sists of textually rich documents (As) while the other con-
tains sparse documents (At). In the paper, they address two
research problems: document expansion and term selection.
For the document expansion task, each targeted document
(a document in sparse set) is mapped to one or more docu-
ments in the rich set, using simple cosine-similarity measure.
Top N documents are chosen from the rich corpus, and the
texts in these documents are added to the targeted doc-
uments as supplemental content. The term selection task
was introduced because using the whole documents from
the source corpus to enrich the targeted document might
be too spurious and have a fair chance of topic drifts. This
term selection task aims to select only meaningful words
from each document in the source corpus to add to the tar-
geted documents. Basically, top K% of the words in each
document, ranked by TF-IDF scores, are selected as repre-
sentative words of the document.
This work has a similar problem setting to ours, except

that we aim to annotate a query document with keywords
taken from the library, while their approaches extract key-
words from the full content of documents.
Witten et al. propose KEA, a machine learning based

key phrase extraction algorithm from documents [23]. The
algorithm can also be applied to annotate documents with
relevant keyphrases. Their algorithm first selects candidate
keyphrases from the document. Two features are extracted
from each candidate keyphrase: TF-IDF score and distance
of the first occurrence of the keyphrase from the beginning of
the document. A binary NaiveBayes classifier is trained with
the extracted features to build a classification model, which
is used for identifying important keyphrases. The algorithm
is later enhanced by Medelyan et al. [15] to improve the
performance and add more functionality such as document

annotation and keyphrase recommendation from control vo-
cabulary, where the list of keyphrases to be recommend are
already defined in the vocabulary. We use keyphrase rec-
ommendation with control vocabulary feature of the KEA
algorithm as our baseline.

2.2 Automatic Tag Recommendation
Since we have a tag recommendation problem, we briefly

cover related literature. Tag recommendation has gained
substantial amount of interest in recent years. Most work,
however, focuses on personalized tag recommendation, sug-
gesting tags to a user’s object based on the user’s preference
and social connection. Mishne et al. [17] employ the so-
cial connection of the users to recommend tags for weblogs,
based on similar weblogs tagged by the same users. Wu et
al.[24] utilize the social network and the similarity between
the contents of objects to learn a model for recommending
tags. Their system aims towards recommending tags for
Flickr photo objects. While such personalized schemes have
been proven to be useful, some domains of data have limited
information about authors (users) and their social connec-
tions. Liu et al. [12] propose a tag recommendation model
using Machine Translation. Their algorithm basically trains
the translation model to translate the textual description
of a document in the training set into its tags. Krestel et
al.[11] employ topic modeling for recommending tags. They
use the Latent Dirichlet Allocation algorithm to mine top-
ics in the training corpus, using tags to represent the textual
content. They evaluate their method against the association
rule based method proposed in [7].

3. DATASETS
We obtain 4 different datasets of environmental metadata

records for the experiments: the Oak Ridge National Labo-
ratory Distributed Active Archive Center (DAAC)7, Dryad
Digital Repository (DRYAD)8, the Knowledge Network for
Biocomplexity (KNB)9, and TreeBASE: a repository of phy-
logenetic information (TreeBASE)10. The statistics of the
datasets including the number of documents, total number
of tags, average number of tags per document, number of
unique tags (tag library size), tag utilization, number of all
words (dataset size), and average number of word per doc-
ument, are summarized in Table 1. Tag utilization is the
average number of documents where a tag appears in, and is
defined as # all tags

# unique tags
. The tag utilization measure quan-

tifies how often, on average, a tag is used for annotation.
The Oak Ridge National Laboratory Distributed Active

Archive Center (ORNL DAAC) is one of the NASA Earth
Observing System Data and Information System (EOSDIS)
data centers managed by the Earth Science Data and In-
formation System (ESDIS)11 Project, which is responsible
for providing scientific and other users access to data from
NASA’s Earth Science Missions. The biogeochemical and
ecological data provided by ORNL DAAC can be catego-
rized into four groups: Field Campaigns, Land Validation,
Regional and Global Data, and Model Archive. After raw
data is collected, the data collector describes the data and

7http://daac.ornl.gov/
8http://datadryad.org/
9http://knb.ecoinformatics.org/index.jsp

10http://treebase.org/treebase-web/home.html
11http://earthdata.nasa.gov/esdis



# Docs #All Tags Avg Tags/Doc #Uniq. Tags Tag Util. #All Words Avg Words/Doc
DAAC 978 7,294 7.46 611 11.937 101968 104.261
DRYAD 1,729 8,266 4.78 3,122 2.647 224,643 129.926
KNB 24,249 254,525 10.49 7,375 34.511 1535560 63.324
TreeBASE 2635 1838 0.697 1321 1.391 30054 11.405

Table 1: Statistics of the 4 datasets.

annotates it using topic-represented keywords from the topic
library.
Dryad is a nonprofit organization and an international

repository of data underlying scientific and medical publi-
cations. The scientific, educational, and charitable mission
of Dryad is to promote the availability of data underlying
findings in the scientific literature for research and educa-
tional reuse. As of January 24, 2013, Dryad hosts 2570 data
packages and 7012 data files, associated with articles in 186
journals. Metadata associated with each data package is
annotated by the author with arbitrary choices of keywords.
The Knowledge Network for Biocomplexity (KNB) is a na-

tional network intended to facilitate ecological and environ-
mental research on biocomplexity. For scientists, the KNB is
an efficient way to discover, access, interpret, integrate and
analyze complex ecological data from a highly-distributed
set of field stations, laboratories, research sites, and indi-
vidual researchers. Each data package hosted by KNB is
described and annotate with keyword from the taxonomy
by the data collector.
TreeBASE is a repository of phylogenetic information,

specifically user-submitted phylogenetic trees and the data
used to generate them. TreeBASE accepts all types of phylo-
genetic data (e.g., trees of species, trees of populations, trees
of genes) representing all biotic taxa. Data in TreeBASE are
exposed to the public if they are used in a publication that
is in press or published in a peer-reviewed scientific jour-
nal, book, conference proceedings, or thesis. Data used in
publications that are in preparation or in review can be sub-
mitted to TreeBASE but are only available to the authors,
publication editors, or reviewers using a special access code.
TreeBASE is produced and governed by the The Phyloin-
formatics Research Foundation, Inc12.
In our setting, we assume that the documents are indepen-

dently annotated, so that the tags in our training sets rep-
resent the gold-standard. However, some metadata records
may not be independent since they may be originated from
the same projects or authors, hence annotated with simi-
lar styles and sets of keywords. To mitigate such problem,
we randomly select a subset of 1,000 annotated documents
(except DAAC dataset, which only has 978 documents of
land terrestrial ecology, hence we select them all.) from
each archive for our experiments. We combine all the tex-
tual attributes (i.e. Title, Abtract, Description) together
as the textual content for the document. We preprocess the
textual content in each document by removing 664 common
stop words and punctuation, and stemming the words using
the Porter2’s13 stemming algorithm.

4. PRELIMINARIES

12http://www.phylofoundation.org/
13http://snowball.tartarus.org/algorithms/english/stemmer.html

Our proposed solution is built upon the concepts of Cosine
Similarity, Term Frequency-Inverse Document Frequency (TF-
IDF), and Latent Dirichlet Allocation (LDA). We briefly
introduce them here to fortify readers’ background before
going further.

4.1 Cosine Similarity
In general, cosine similarity is a measure of similarity be-

tween two vectors by measuring the cosine of the angle be-
tween them. Given two vectors A and B, the cosine similar-
ity is defined using a dot product and magnitude as:

CosineSim(A,B) =
A ·B

∥A∥ ∥B∥
=

∑N
i=1 Ai ×Bi√∑N

i=1(Ai)2 ×
√∑N

i=1(Bi)2

CosineSim(A,B) outputs [0,1], with 0 indicating inde-
pendence, and the value in between indicates the level of
similarity. In information retrieval literature, the cosine sim-
ilarity is heavily used to calculate the similarity between two
vectorized documents.

4.2 Term Frequency-Inverse Document Fre-
quency

TF-IDF is used extensively in the information retrieval
area. It reflects how important a term is to a document in
a corpus. TF-IDF has two components: the term frequency
(TF) and the inverse document frequency (IDF). The TF
is the frequency of a term appearing in a document. The
IDF of a term measures how important the term is to the
corpus, and is computed based on the document frequency,
the number of documents in which the term appears. For-
mally, given a term t, a document d, and a corpus (document
collection) D:

tf(t, d) =
√

count(t, d)

idf(t,D) =

√
log

(
|D|

|d ∈ D; t ∈ d|

)
TFIDF (t, d,D) = TF (t, d) · IDF (t,D)

We can then construct a TF-IDF vector for a document d
given a corpus D as follows:

TFIDF (d,D) = ⟨TFIDF (t1, d,D), · · · , TFIDF (tn, d,D)⟩

Consequently, if one wishes to compute the similarity score
between two documents d1 and d2, the cosine similarity can
be computed between the TF-IDF vectors representing the
two documents:

DocSimTF−IDF (d1, d2, D) =

CosineSim (TFIDF (d1, D), TFIDF (d2, D))
(1)



4.3 Latent Dirichlet Allocation
In text mining, the Latent Dirichlet Allocation (LDA) [3]

is a generative model that allows a document to be repre-
sented by a mixture of topics. Past literature such as [10,
20, 21] demonstrates successful usage of LDA to model top-
ics from given corpora. The basic intuition of LDA for topic
modeling is that an author has a set of topics in mind when
writing a document. A topic is defined as a distribution of
terms. The author then chooses a set of terms from the
topics to compose the document. With such assumption,
the whole document can be represented using a mixture of
different topics. LDA serves as a means to trace back the
topics in the author’s mind before the document is written.
Mathematically, the LDA model is described as follows:

P (ti|d) =
|Z|∑
j=1

P (ti|zi = j) · P (zi = j|d)

P (ti|d) is the probability of term ti being in document
d. zi is the latent (hidden) topic. |Z| is the number of all
topics. This number needs to be predefined. P (ti|zi = j) is
the probability of term ti being in topic j. P (zi = j|d) is the
probability of picking a term from topic j in the document
d.
Essentially, the LDA model is used to find P (z|d), the

topic distribution of document d, with each topic is described
by the distribution of term P (t|z). After the topics are mod-
eled, we can assign a distribution of topics to a given docu-
ment using a technique called inference. A document then
can be represented with a vector of numbers, each of which
represents the probability of the document belonging to a
topic.

Infer(d, Z) = ⟨z1, z2, ..., zQ⟩; |Z| = Q

Where Z is a set of topics, d is a document, and zi is
a probability of the document d falling into topic i. Since
a document can be represented using a vector of numbers,
one can then compute the topic similarity between two doc-
uments d1 and d2 using cosine similarity as follows:

DocSimTM (d1, d2, Z) =

CosineSim (Infer(d1, Z), Infer(d2, Z))
(2)

5. METHOD
The metadata annotation problem is transformed into the

tag recommendation with a controlled tag library. A doc-
ument is a tuple of textual information and a set of tags,
i.e. ⟨text, tags⟩. A document query is a document with-
out tags, ⟨text,⊘⟩. Specifically, given a tag library T =
⟨t1, t2, ..., tm⟩, a document corpus D = ⟨d1, d2, ..., dn⟩, and
a document query q, the algorithm outputs a ranked list
T ∗
K = ⟨t1, t2, ..., tK⟩, where ti ∈ T , of K tags relevant to the

document query q.
Our proposed algorithm comprises 2 main steps:

STEP1 P (t|q, T,D,M), the probability of tag t being rele-
vant to q, is computed for each t ∈ T . M is the docu-
ment similarity measure, which can be either TF-IDF
or TM.

STEP2 Return top K tags ranked by the P (t|q, T,D,M)
probability.

P (t|q, T,D,M) is the normalization of the relevance score
of the tag t to the document query q, and is defined below:

P (t|q, T,D,M) =
TagScoreM (t, q,D)∑

τ∈T TagScoreM (τ, q,D)

TagScoreM (t, q,D) =
∑
d∈D

DocSimM (q, d,D) · isTag(t, d)

TagScoreM (t, q,D) calculates the tag score determining
how relevant the tag t is to document query q. This score
can be any real non-negative number. DocSimM (q, d,D)
measures the similarity between two documents, i.e. q and
d, given a document corpus D and returns a similarity mea-
sure ranging between [0,1]. isTag(t, d) is a binary function
that returns 1 if t ∈ d.tags and 0 otherwise. We propose
two approaches to compute the document similarity: Term
Frequency-Document Inverse Frequency (TF-IDF) based
(DocSimTF−IDF (q, d,D)) and Topic Modeling (TM) based
(DocSimTM (q, d,D)). These two approached are described
in the next subsections.

5.1 TF-IDF based DocSimTF−IDF (q, d,D)

The TF-IDF based document similarity measure relies
on the term frequency-inverse document frequency principle
discussed in Section 4.2. The function aims to quantify the
content similarity based on term overlap between two doc-
uments. In order to compute the IDF part of the scheme,
all the documents in D are first indexed. Hence the train-
ing phase (preprocess) involves indexing all the documents.
We then compute the similarity between the query q and a
source document d usingDocSimTF−IDF (q, d,D) as defined
in Equation 1.

5.2 TM based DocSimTM (q, d,D)

The TM based document similarity measure utilizes topic
distributions of the documents using the LDA algorithm as
described in Section 4.3. The algorithm further extracts the
semantic reposing within a document captured by its topic
distribution. With this knowledge in mind, one can measure
the semantic similarity between two documents by quantify-
ing the similarity between their topic distributions. Indeed,
our proposed TM based algorithm transforms the topic dis-
tribution of a document into a numerical vector, wherein
Cosine similarity is used to compute the topic similarity be-
tween two documents using Equation 2.

6. EVALUATION AND DISCUSSION
We evaluate our methods using the tag prediction proto-

col. We artificially create a test query document by remov-
ing the tags from an annotated document. The task is to
predict the removed tags. There are two reasons behind the
choosing of this evaluation scheme:

1. The evaluation can be done fully automatically. Since
our datasets are large, manual evaluation (i.e. having
human identify whether a recommended tag is relevant
or not) would be infeasible.

2. The evaluation can be done against the existing gold
standard established (manually tagged) by expert an-
notators (i.e. data collectors, project principal investi-
gators, etc.) who have good understanding about the



data, while manual evaluation could lead to evaluation
biases.

We evaluate our TF-IDF and TM based algorithms against
the baseline KEA document annotation algorithm with con-
trolled vocabulary. In our setting, the tag library is used as
the vocabulary in the KEA algorithm. The document-wise
10 fold cross validation is performed, where each dataset
is first split into 10 equal subsets, and for each fold i ∈
{1, 2, 3, ..., 10} the subset i is used for the testing set, and
the other 9 subsets are combined and used as the source
(training set). The results of each fold are summed up and
the averages are reported.
For the TF-IDF based algorithm, we use LingPipe14 to

perform the indexing and calculating the TF-IDF based sim-
ilarity. For the TM based algorithm, the training process in-
volves modeling topics from the source using LDA algorithm
as discussed in Section 4.3. We use the Stanford Topic Mod-
eling Toolbox15 with the collapsed variational Bayes approx-
imation[2] to identify topics in the source documents. For
each document we generate uni-grams, bi-grams, and tri-
grams, and combine them to represent the textual content
of the document. The algorithm takes two input parame-
ters: the number of topics to be identified and the maximum
number of the training iterations. After some experiments
on varying the two parameters, we fix them at 300 and 1,000
respectively. The inference method proposed by Asuncion
et al. [2] is used to assign a topic distribution to a given
document. The evaluation is done on a Windows 7 PC with
Intel Core i7 2600 CPU 3.4 GHz and 16GB of ram.

6.1 Evaluation Metrics
This section presents the evaluation metrics used in our

tasks, including precision, recall, F1, Mean Reciprocal Rank
(MRR), and Binary Preference (Bpref). These metrics, when
used in combination, have shown to be effective for evalua-
tion of recommending systems[8, 13, 25].

6.1.1 Precision, Recall, F1
Precision, recall, and F1 (F-measure) are well-known eval-

uation metrics in information retrieval literature [14]. For
each document query in the test set, we use the original set
of tags as the ground truth Tg. Assume that the set of rec-
ommended tags are Tr , so that the correctly recommended
tags are Tg

∩
Tr. Precision, recall and F1 measures are de-

fined as follows:

precision =
|Tg

∩
Tr|

|Tr|
, recall =

|Tg

∩
Tr|

|Tg|
, F1 =

2 · precision · recall
precision + recall

In our experiments, the number of recommended tags ranges
from 1 to 30. It is wise to note that better tag recommen-
dation systems tend to rank correct tags higher than the
incorrect ones. However, the precision, recall, and F1 mea-
sures do not take ranking into account. To evaluate the
performance of the ranked results, we employ the following
evaluation metrics.

6.1.2 Mean Reciprocal Rank (MRR)
MRR[22] measure takes ordering into account. It mea-

sures how well the first correctly recommended tag is ranked.
The reciprocal rank of a query is the multiplicative inverse of

14http://alias-i.com/lingpipe/
15http://nlp.stanford.edu/software/tmt/tmt-0.4/

the rank of the first correctly recommended tag. The mean
reciprocal rank is the average of the reciprocal ranks of the
results of the query set Q. Formally, given a testing set Q,
let rankq be the rank of the first corrected answer of query
q ∈ Q, then MRR of the query set Q is defined as follows:

MRR =
1

|Q|
∑
q∈Q

1

rankq

If the set of recommended tags does not contain a correct
tag at all, 1

rankq
is defined to be 0.

6.1.3 Binary Preference (Bpref)
Bpref measure considers the order of each correctly rec-

ommended tag [5]. Let S be the set of recommended tags
by the system, R be the set of corrected tags , r ∈ R be
a correct recommendation, and i ∈ S − R be an incorrect
recommendation. The Bpref is defined as follows:

Bpref =
1

|R|
∑
r∈R

1− |i ranked higher than r|
|S|

Bpref can be thought of as the inverse of the fraction of
irrelevant documents that are retrieved before relevant ones.
Bpref and mean average precision (MAP) are similar when
used with complete judgments. However, Bpref normally
gives a better evaluation when used in a system with incom-
plete recommendations.

6.2 Results

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 5 10 15 20 25 30

P
re

ci
si

o
n

 

Number of recommeded tags 

DAAC 

0

0.05

0.1

0.15

0.2

0.25

0 5 10 15 20 25 30

P
re

ci
si

o
n

 
Number of recommended tags 

DRYAD 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 5 10 15 20 25 30

P
re

ci
si

o
n

 

Number of recommended tags 

KNB 

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0 5 10 15 20 25 30

P
re

ci
si

o
n

 

Number of recommended tags 

TREEBASE 

Figure 2: Precision of the TF-IDF, TM, KEA (baseline)
algorithms on the 4 datasets.

Figures 2,3,4 plot the precision@K, recall@K, F1@K re-
spectively evaluated at the top K recommended tags of the
proposed TF-IDF and TM based algorithms against the
baseline KEA algorithm on each dataset. Figure 5 sum-
marizes the precision versus recall on each dataset.

According to the results, our proposed algorithms outper-
form the baseline KEA algorithm on the DAAC and KNB
datasets (TM based approach outperforms at every K and
TF-IDF based approach outperforms at larger K). This is
because the tags used to annotate DAAC and KNB docu-
ments are drawn from the libraries of topics. Hence there
is a high chance that a tag is reused for multiple times, re-
sulting in high tag utilization. Since our algorithms tend to
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Figure 3: Recall of the TF-IDF, TM, KEA (baseline) algo-
rithms on the 4 datasets.
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Figure 4: F1 of the TF-IDF, TM, KEA (baseline) algo-
rithms on the 4 datasets.

give higher weight to tags that have been used frequently,
datasets with high tag utilization (such as DAAC and KNB)
tend to benefit from our algorithms.
However, our proposed algorithms tend to perform worse

than the baseline on the DRYAD dataset. This is because,
tags in each DRYAD document are manually made up at
the curation process. Manually making up tags for each
document results in a large size of tag library where each
tag is used only a few times, leading to the low tag uti-
lization. Datasets with low tag utilization do not tend to
benefit from our proposed algorithms since the probability
distribution given to the tags tends to be uniform and not
very discriminative.
All the algorithms perform poorly on the TreeBASE dataset.

This is because TreeBASE documents are very sparse (some
do not even have textual content), and have very few tags.
From the dataset statistics, each document on the Tree-
BASE dataset has only 11 words and only 0.7 tags on av-
erage. Such sparse texts lead to weak relationship when
finding textually similar documents in the TF-IDF based
approach, and the poor quality of the topic model used by
the TM based approach. The small number of tags per doc-
ument makes it even harder to predict the right tags.
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Figure 5: Precision vs Recall of the TF-IDF, TM, KEA
(baseline) algorithms on the 4 datasets.

Dataset Method MRR Bpref ALT (s) ATT (s)

TFIDF 0.5649 0.8183 5.29 0.99

TM 0.7546 0.9005 2430.82 49.63

KEA 0.5109 0.2337 75.45 6.50

TFIDF 0.2022 0.4404 6.32 1.19

TM 0.3264 0.4934 4486.09 83.76

KEA 0.3423 0.2851 102.59 8.85

TFIDF 0.4944 0.6659 6.06 1.23

TM 0.9226 0.9100 1159.81 49.60

KEA 0.6823 0.2431 64.11 5.61

TFIDF 0.0893 0.0695 6.15 1.08

TM 0.0750 0.0636 401.50 16.99

KEA 0.0745 0.0257 6.26 1.04

DAAC

DRYAD

KNB

TREEBASE

Figure 6: MRR, BPref, Average Learning Time (ALT) and
Average Test Time (ATT) of TF-IDF, TM, KEA (baseline)
algorithms on the 4 datasets.

Figure 6 lists the MRR, BPref, average learning time (in
seconds) per fold, and average testing time (in seconds)
per fold of the proposed TF-IDF and TM based algorithms
against the baseline KEA algorithm on each dataset. MRR
quantifies how the first correct recommendation is ranked.
In terms of MRR, our TM based algorithm performs the best
on the DAAC and KNB datasets, TF-IDF based algorithm
performs the best in the TreeBASE dataset, and the KEA
algorithm performs the best on the DRYAD dataset. The
TM based algorithm achieves the notable MRR scores of
0.75 and 0.92 on the DAAC and KNB datasets receptively,
and outperforming the baseline by 47.70% and 33.22% re-
spectively.

Bpref measures the ranking of all the correctly recom-
mended keywords. In terms of Bpref, our TM algorithm per-
forms the best on the DAAC, DRYAD, and KNB datasets
with the Bpref scores of 0.90, 0.49, and 0.91 respectively.
The TF-IDF based algorithm performs the best on the Tree-
BASE dataset. Similar to the MRR results, notable BPref
scores are achieved by the TM based algorithm on the DAAC
and KNB datasets, outperforming the baseline by 285.32%
and 274.33% respectively.

Figure 7 shows sample results of our proposed TF-IDF/TM
based algorithms and the KEA algorithm against the 15 ac-
tual ground-truth tags associated to an DAAC metadata ti-



Actual Tags TFIDF TM KEA(Baseline) 
[1]albedo 

[2]land cover 

[3]veget cover 

[4]veget index 

[5]leaf area meter 

[6]terra morn equatori cross 

time satellit 

[7]noaa nation ocean amp 

amp atmospher administr 

[8]plant characterist 

[9]steel measur tape 

[10]canopi characterist 

[11]modi moder resolut imag 

spectroradiomet 

[12]leaf characterist 

[13]avhrr advanc high resolut 

radiomet 

[14]field investig 

[15]reflect 

[1]field investig 

[2]analysi 

[3]land cover 

[4]comput model 

[5]reflect 

[6]veget cover 

[7]biomass 

[8]primari product 

[9]steel measur tape 

[10]weigh balanc 

[11]precipit amount 

[12]canopi characterist 

[13]leaf characterist 

[14]water vapor 

[15]quadrat sampl frame 

[16]rain gaug 

[17]surfac air temperatur 

[18]air temperatur 

[19]meteorolog station 

[20]human observ 

[1]land cover 

[2]modi moder resolut imag 

spectroradiomet 

[3]terra morn equatori cross 

time satellit 

[4]field investig 

[5]veget cover 

[6]reflect 

[7]veget index 

[8]leaf characterist 

[9]canopi characterist 

[10]plant characterist 

[11]albedo 

[12]steel measur tape 

[13]avhrr advanc high resolut 

radiomet 

[14]noaa nation ocean amp 

amp atmospher administr 

[15]leaf area meter 

[16]analysi 

[17]comput model 

[18]noaa 

[19]avhrr 

[20]popul distribut 

[1]model 

[2]geograph distribut 

[3]classif 

[4]lba 

[5]amazonia 

[6]area 

[7]south america 

[8]ecolog 

[9]reflect 

[10]calibr 

[11]field investig 

[12]speci 

[13]factor 

[14]sequenc 

[15]hawaiian island 

[16]genera 

[17]fern 

[18]systemat 

[19]steel measur tape 

[20]correl 

Figure 7: Comparison of the recommended keywords by the TF-IDF, TM, and KEA (baseline) algorithms on a sample
document “ISLSCP II IGBP DISCOVER AND SIB LAND COVER, 1992-1993”. The first column lists the actual tags. The
bold, underlined terms are correctly recommended items.

tled“ISLSCP II IGBP DISCOVER AND SIB LAND COVER,
1992-1993”16. Our TM based algorithm performs well on
this particular example by capturing all the actual tags within
the top 15 recommended tags.

6.3 TM vs TF-IDF Based Approaches
According to the results, our TM based approach performs

better than TF-IDF based approach on DAAC, DRYAD,
and KNB datasets, in terms of precision, recall, and F1
measure, while the TF-IDF based approach performs bet-
ter on the TreeBASE dataset. Since the only difference be-
tween the two proposed methods is the document similar-
ity function DocSim(q, d,D), which computes the similarity
score between the query document q and a source document
d ∈ D, the analysis on the differences between the two doc-
ument similarity measures could provide explanation about
the performance difference.
The TF-IDF document similarity measures the cosine sim-

ilarity between two TF-IDF vectors representing the two
documents. Loosely speaking, the TF-IDF document sim-
ilarity measures the quantity of term overlap, where each
term has a different weight, in the two documents.
The TM based approach first derives a set of topics from

the document source, each of which is represented by a dis-
tribution of terms. The ranked terms in each topic bare
coherent semantic meanings. Figure 8 provides an exam-
ple of the top 10 terms in sample 9 topics derived from the
DAAC dataset using the LDA algorithm with 300 topics
and 1,000 iterations. Once the set of topics has been de-
termined, a document is assigned a distribution of topics
using the inference algorithm mentioned in Section 4.3. The
TM document similarity then measures the cosine similarity
between the topic distribution vectors representing the two

16http : //daac.ornl.gov/cgi− bin/dsviewer.pl?dsid = 930

documents. Loosely speaking, the TM document similarity
quantifies the topic similarity between the two documents.

The difference in performance of both the proposed meth-
ods could be impacted by the semantic representation of
each document. It is evident from the experimental results
on the DAAC, DRYAD, and KNB datasets, that represent-
ing a document with a mixture of topics lead to a more ac-
curate semantic similarity interpretation, leading to better
recommendation. However, the reason why the TM based
approach performs worse than the TF-IDF based approach
on the TreeBASE dataset could be because the documents
in such dataset are very sparse (Each TreeBASE document
has only 11 words on average). Such sparsity could lead to
a poor set of topics, consisting of idiosyncratic word combi-
nations.

Hence we recommend the TM based algorithm for datasets
whose documents are rich in textual documents, and the
TF-IDF based algorithm approach for those with textually
sparse documents.

6.4 Limitations
Regardless of the promising performance, our proposed

document annotation algorithms have the following limita-
tions:

1. Our algorithms rely on the existence of a good docu-
ment source (training set). The quality of the resulting
annotation directly reflects the quality of the annota-
tion of each document in the training data. Fortu-
nately, the current ONEMercury system only retrieves
the metadata from the archives wherein each metadata
document is manually provided by Principal investiga-
tors and data managers. In the future, however, the
system may expand to collect the metadata from the
sources in which the data records may have poor or
no annotation. Such problems urge the need for a
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Figure 8: Top 10 terms in sample 9 topics derived using LDA algorithm from the DAAC dataset.

method that allows the automatic annotator trained
with a high-quality training dataset to annotate the
documents in different datasets. We plan to inves-
tigate into such cross-source recommendation in our
future work.

2. Our TM based algorithm needs to model topics from
scratch every time a significant amount of new docu-
ments are added to the training corpus, so that the
modeled topics can reflect the new documents added.
Since our TM based algorithm utilizes the traditional
LDA algorithm to model topics, wherein incremental
training is not a feature, we plan to explore into meth-
ods such as [1] and [9] which may enable our algorithm
to adaptively model the topics from a dynamic corpus.

3. Regardless of the promising performance of our pro-
posed TM based algorithm, the scalability can be an
issue when it comes to mining topics from a larger
corpus of documents. The scalability issues of our TM
based algorithm is discussed in detail in the next sub
section.

6.5 Scalability of the TM Approach

0

10000

20000

30000

40000

50000

60000

100 200 300 400 500

Le
a

rn
in

g
 T

im
e

 (
se

co
n

d
s)

Number of topics

Figure 9: Learning time in seconds of the TM based algo-
rithm as a function of numbers of topics.

Scalability issues should be taken into account since the
algorithms will eventually be cooperated as part of the ONE-
Mercury system, which currently hosts much larger datasets
than the ones we use in the experiments. This section presents
two scalability issues presented in the TM based algorithm:
the increase in number of topics and the increase in size of
the corpus.
We examine the scalability issues our TM based algorithm

on the KNB dataset, using the Stanford Topic Modeling
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Figure 10: Learning time in seconds of the TM based algo-
rithm as a function of numbers of training documents.

Toolbox with collapsed variational Bayes approximation and
fixed 1,000 iterations, on the same machine we use for earlier
experiments.

As the data grows larger, new topics emerge, urging the
need for a new model that captures such increasing variety
of topic. Figure 9 plots the training time (in seconds) as
the function of number of topics. The training time grows
approximately linearly with the number of topics up to 400
topics. The program runs out of physical memory, however,
at 500 topics, leading to a dramatic increase in the training
time. Hence, this study points out a more memory-efficient
topic model algorithm should be explored.

Another scalability concern lies with the projected in-
crease in the number of training documents. Figure 10 shows
the training time of the TM based algorithm as the num-
ber of document increases. The results also show a linear
scale with the number of training documents. Note that the
experiment is only done with up to 1,000 documents, while
there are roughly 47 thousands, and definitely increasing in
the future, metadata records in the current system. Even
with the current size of the ONEMercury repository, the al-
gorithm would take approximately 5.3 hours to model topics,
which is not feasible in practice. Hence a large-scale parallel
algorithm such as MapReduce[6] should be investigated.

7. CONCLUSION AND FUTURE WORK
This paper presents a set of algorithms for automatic an-

notation of metadata. We are motivated by the real world
problems faced by ONEMerucy, a search system for envi-
ronmental science metadata harvested from multiple data
archives. One of the important problems includes the differ-
ent of levels of curation of metadata from different archives,



which means that the system must automatically annotate
poorly annotated metadata records. We treat each meta-
data record as a tagged document, and then transform the
problem into the tag recommendation problem with a con-
trolled tag library.
We propose two algorithms for tag recommendation, one

based on term frequency-inverse document frequency (TF-
IDF) and the other based on topic modeling (TM) using
the Latent Dirichlet Allocation. The evaluation is done on
4 different datasets of environmental metdata using the tag
prediction evaluation protocol, against the well known KEA
document annotation algorithm. The results show that our
TM based approach yields better results on datasets char-
acterized to have high tag utilization and rich in textual
content such as DAAC and KNB than those which do not
(i.e. DRYAD abd TreeBASE), though with the cost of longer
learning times. The scalability issues of the TM based algo-
rithm necessitate investigation into more memory-efficient
and scalable approaches. Finally, future steps could be im-
plementing an automatic metadata annotation algorithm
on the ONEMercury search service or explore online tag-
ging[19].
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