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Abstract Scientists in the Earth and Environmental Sciences (EES) domain in-
creasingly use ontologies to analyze and integrate their data. For example, the
NASA’s SWEET ontologies (Semantic Web for Earth and Environmental Termi-
nology) have become the de facto standard ontologies to represent the EES domain
formally [22]. Now we must develop principled ways both to evaluate existing on-
tologies and to ascertain their quality in a quantitative manner. Existing literature
describes many potential quality metrics for ontologies. Among these metrics is
the coverage metric, which approximates the relevancy of an ontology to a cor-
pus [28]. This paper has three primary contributions to the EES domain: (1) we
present an investigation of the applicability of existing coverage techniques for the
EES domain; (2) we present a novel expansion of existing techniques that uses
thesauri to generate equivalence and subclass axioms automatically; and (3) we
present an experiment to establish an upper-bound coverage expectation for the
SWEET ontologies against real-world EES corpora from DataONE [19], and a
corpus designed from research articles to specifically match the topics covered by
the SWEET ontologies. This initial evaluation suggests that the SWEET ontology
can accurately represent real corpora within the EES domain.

1 The SWEET Ontologies and Domain Relevancy

Scientists in the Earth and Environmental Sciences (EES) domain increasingly
use ontologies to analyze and integrate their data. Ontologies define the terms in
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a domain of discourse (shared metadata terms), provide constraints on the values
and define formal semantics that enable automated reasoning. Furthermore, the
World-Wide Web Consortium (W3C) has defined OWL, a formal language for
representing and sharing ontologies on the Web, enabling scientists to publish and
integrate metadata using standard Web protocols. One can think of an ontology
as a taxonomy of terms with added rules and relationships that can be used by
computer algorithms. Ontologies and semantic descriptions of the scientific data
and processes provide the necessary objects supporting the production of new
knowledge by allowing interoperability of the processes, shared annotations and
integration of the data.

Concurrent with the increasing capacity of ontologies to approximate mean-
ingfully the semantic understanding of domain knowledge, there is an increase of
ontology use within the domain of Earth and Environmental Sciences (EES) [11].
Indeed, there is work that supports different activities with ontologies ranging from
ontology-expanded search and discovery [21,23] to matching tools and datasets us-
ing ontology rules [16].

Unfortunately, there is no single accepted standard for quantitatively measur-
ing the quality of a given ontology, or sufficient experimental evidence to support
a single ontology (or set of ontologies) as accurately representing the EES do-
main [9, 28]. Yet what is fairly common within the EES community, is the use of
the SWEET ontology set (arguably the paramount EES ontology set) notwith-
standing a lack of formal studies that examine or evaluate the quality of it.

Researchers have proposed a host of potential metrics to ascertain the quality
of an ontology including coverage metrics [3,4,6,8,17,18,26,28]. Coverage metrics
approximate the relevancy of an ontology to a given corpus by determining the
number of ideas and relationships that are covered by the ontology (i.e., they exist
within the ontology). However, there is a dearth of studies that examine existing
coverage metrics within the EES domain using EES ontologies. Thus, it remains
unclear whether existing coverage techniques translate well when used within the
EES domain.

This work presents a study on the applicability of existing coverage techniques
for use within the EES domain as well as experiments to evaluate empirically the
relevancy of the SWEET ontologies to the EES domain.

One insight from the literature is that while ontologies represent structured
descriptions of the domain knowledge, ontology definitions contain a variety of
natural-language terms (e.g., class names). Thus, the ability to calculate their
coverage score using existing Natural-Language-Processing (NLP) methods can
provide insights on how close an ontology corresponds to a particular text corpus.

Yao and colleagues have developed a methodology for assessing ontology cov-
erage with respect to a corpus in a biomedical domain [28]. Their methodology
leverages NLP techniques such as stemming, stop-word removal, normalization and
part-of-speech tagging in order to calculate coverage for all classes and equivalence
axioms within an ontology. Thus, our first contribution is the application of this
methodology to a very different domain and a set of ontologies: the domain is the
Earth and Environmental sciences and the ontologies are the SWEET ontologies.

Yao and colleagues calculated coverage only for the terms and did not calcu-
late coverage for subclass axioms. In order to evaluate coverage more precisely,
we expand Yao’s methodology to enable subclass-axiom coverage using our novel
approach, Synonym Synergy.
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Synonym Synergy is a technique that leverages thesauri to approximate sub-
class relationships using synonyms relationships. It approximates these relation-
ships by determining which word combinations are only partial synonyms. For
example, if a term A is a synonym of term B, but term B is not a synonym
of term A, then we call this a partial synonym (as the synonym relationship is
not bidirectional). We apply this expanded methodology to the EES domain to
measure its applicability.

In addition to this generalization of existing techniques, we perform an exper-
iment to calculate a upper-bound coverage for the SWEET ontology set. Our ex-
periment utilizes two corpora: The first corpus, from DataONE [19], is a real-world
corpus taken from a variety of stakeholders within the EES domain and includes
more than 46,000 documents. The second corpus is a semi-randomly selected cor-
pus (we refer to this corpus as the tailored corpus) using existing scientific articles
that topically are synonymous with the SWEET ontologies. The tailored corpus
represents a possible upper bound using the expanded methodology, because the
documents chosen specifically deal with the topics within SWEET. Thus, by com-
paring the SWEET ontologies’ coverage score from the DataONE corpus against
the tailored corpus, we can empirically evaluate the relevancy of the SWEET on-
tologies for real-world EES corpora.

Our results suggest that the expanded methodology is applicable and that the
SWEET ontologies accurately represent the EES domain.

This work makes the following contributions:

1. We present an empirical investigation of the applicability of existing ontology-
coverage techniques from the biomedical field for use within the EES domain.
Our study investigates the assumptions and differences between these fields’
uses of ontologies.

2. We present a novel approach to generate automatically subclass axioms from an
existing corpus using Synonym Synergy. Synonym Synergy utilizes multiple
thesauri to determine whether the synonym relationship between word pairs
is bidirectional or one-sided. This approach generalizes existing techniques to
allow for increased applicability within the EES domain.

3. We present an experiment to evaluate the quantitative relevancy of the SWEET
ontology set to the EES domain using our expanded coverage methodology. We
leverage a real-world corpus containing over 46,000 documents, and a tailor-
made corpus using semi-randomly selected research documents that are top-
ically synonymous with the SWEET ontologies. This experiment establishes
a likely best-case or baseline coverage that can be expected from the SWEET
ontologies.

The remainder of the paper is outlined as follows: first we discuss the related
work for this field, then we present motivations for this work, next we discuss
the coverage methodology used in this work, then we present our experiment and
results, next we discuss the implications of these results, and finally we present a
conclusion and the future directions for this work.

2 Related Work

The increasing relevance of ontologies over the past years, researchers developed
many different approaches for measuring and evaluating the quality of ontologies.
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In 2005 for example, Brank and colleagues identified four different types of tech-
niques for ontology evaluation which have been elaborated by other researchers [2]:
(i) defining and comparing an ontology against a previously defined “gold stan-
dard” by using some measures of semantic similarity; (ii) evaluation of the ontology
through an application based approach by defining the fitness of a given ontology
to satisfy a given task [9]; (iii) extracting evaluation information from related data
to evaluate the similarity with a related text corpus [28]; and (iv) manual evalua-
tion, which typically involves human subjects comparing and measuring ontologies
against a predefined set of requirements or measures.

In this paper, we focus on (iii), extracting evaluation information from related
data to evaluate the similarity with a related text corpus.

Previous research has explored the application of ontologies in earth sciences
and the evaluation of ontologies in this context. For instance, Wiegand and Gar-
cia [27] proposed a task-based method of evaluating geospatial ontologies. They
developed a task ontology, to accompany an ontology of geospatial terms, and
used the explicit description of tasks to evaluate the appropriateness of the on-
tology. Tripathi and Babaie [25] evaluated how amenable the SWEET ontologies
are to extending them to other domains, specifically the hydrogeology domain.
They demonstrated that SWEET ontologies can be extended successfully while
still maintaining their modular structure and the existing links. These methods
thus addressed a complementary aspect of ontology evaluation to the one we are
addressing.

3 Need for Coverage

To help clarify the requirements and limitations of existing evaluation metrics
based on coverage we present three use cases to scope our problem space, which
are representative of a larger domain.

Use Case 1: Scientist Susie has multiple ontologies
and needs to know which best matches her domain.
Use Case 2: Scientist Robert has multiple corpora
and needs to know which is best matched by his lab’s
ontology.
Use Case 3: Scientist Jane is trying to optimize her
ontology and needs to know the importance of its
entities, such as classes and axioms (e.g., which terms
are used frequently and which terms are used seldom,
if ever).

Although there are a variety of ontology-evaluation metrics, when considering
these representative use-cases, only a few are applicable: manual investigation [9],
use of a gold standard [17], use of a fitness function [9], and coverage-based tech-
niques [28]. Each of these metrics requires a different input and provides a different
type of evaluation. Thus, we briefly describe the contributions and limitations of
each technique.

Manual investigation approaches use experts to examine the ontology by hand in
order to provide a score that represents the quality of ontologies or expected success
for a given task. This approach has multiple high cost requirements including: (1)
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a group of humans with a sufficient skill set to determine the ontologies quality,
(2) sufficient time to investigate manually each idea and relationship represented
within the ontology, (3) sufficient expertise to overcome the cognitive complexity of
ontology representations [7], and (4) a process for settling disagreements between
human scores. Additionally, this approach must be repeated whenever there are
changes to the task, the ontology, or the domain. These concerns make using a
manual investigation problematic. However, if skilled humans with sufficient time
can agree upon a score for a given ontology for a specific task, this approach likely
represents the most meaningful score of an ontology’s quality and relevance. For
our use cases, this type of approach is less than ideal because each scientist would
have to gather a group of skilled people with sufficient time to understand their
ontologies and their corpora and then have them agree upon a score for each task;
it is not very efficient or practical.

Gold standard evaluations provide a quality score that describes the degree
to which the ontology matches the classes or relationships that exist within the
gold standard. While this approach sounds initially appealing, a preliminary dif-
ficulty lies in generating a quality gold standard, which is both time consuming
and mostly manual resulting in a somewhat error prone process. A second diffi-
culty is that the gold standard is only applicable to the set of circumstances for
which it is constructed. Indeed if the domain evolves, or if an ontology describes
a different set of topics than those built into the gold standard, this evaluation
method provides less than ideal results. However, if a gold standard exists, and the
ontology and standard describe the same domain, this evaluation can provide a
meaningful approximation of the relevancy of the ontology. For our use cases, this
type of approach is problematic because the answers to the scientists’ questions
are required to generate the gold standard, which would then be used to evaluate
the answers. In other words, the same information that would be used to generate
the gold standard would be used to deduce the answer to each individual question,
such that the work involved in creating a gold standard would need to be repeated
for each specific use case; a very time consuming process.

Fitness function evaluations typically provide a quality score that approximate
the usefulness of an ontology for a given task. This approach requires that a
heuristic be developed and tested to ensure that it accurately approximates a score
for a given task. The development and testing of this heuristic requires multiple
input ontologies so as to create a varied input set (i.e., to ensure the heuristic is a
functional approximation requires multiple inputs to test and refine its properties),
someone of sufficient expertise in the given domain to develop a heuristic for each
use case, and the time to do this. While the time to create this function and test it
is likely less than the time to create a gold standard (and much less than a manual
approach), it is not trivial; and neither is the domain expertise to create it. For
our use cases this approach is problematic because our scientists might not have
more ontologies to be able to test a fitness function (if they must develop one),
and would have to develop a different function for each use case, which is likely
quite time consuming.

Coverage approach evaluations generate a quality score that represents how well
a given dataset is “covered” (is relevant to) an ontology. This approach requires
a dataset that reasonably approximates a given domain or problem along with an
ontology. Ensuring that a dataset represents a domain can be somewhat problem-
atic, as some domains are large, or are constantly evolving. However, if a dataset
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Table 1: Comparison between biomedical ontologies used by Yao and colleagues
[28], and the SWEET ontologies.

SNOMED-CT ICD9-CM MeSH SWEET
(as a
whole)

SWEET
(per
ontology)

Num of Classes 395,036 22,400 229,698 4,527 20.86
Num of Properties 41 10 32 358 1.64
Max Depth 32 6 0 10 0.04
Max Siblings 20,010 21 0 51 0.23
Avg Siblings 1 1 0 19 0.08

exists or can be found, this approach is fast, requires no manual building of a
“correct answer” (as opposed to the gold standard and fitness function methods)
and is entirely automatic (as opposed to the manual approach). For our use cases,
this approach is the most reasonable as the scientists have corpora (their domain
relevant dataset), and while these might need to be extended to ensure sufficient
domain representativeness, this process is likely the fastest and requires no addi-
tional building of tools or techniques. Further, unlike the other approaches which
repeat the time-consuming aspect of their approach for each use case (e.g., are not
generalizable across different use cases) this approach works for each use case with
minimal additional cost.

4 Applicability of Existing Techniques

Due to their specific scope, existing coverage-techniques may be ineffective when
used outside of their expected domain. One cause of this limitation is that ontolo-
gies from different domains contain different underlying assumptions (e.g., large,
multi-topic ontologies versus small, single-topic ontologies), and understanding
the differences between domains can enable greater success in the generalization
of techniques across domains. Given the potential of coverage techniques to ad-
dress problem domain represented by our use cases for the EES domain, we now
consider the applicability of existing techniques.

This work focuses on techniques from the biomedical domain described by Yao
and colleagues [28]. The technique presented in this work utilizes a thesaurus to
evaluate the coverage of classes and equivalence relationships for a given ontol-
ogy. In other words, this method evaluates only coverage for ideas, and a single
relationship.

While there a large diversity of ontologies within this domain that have different
features and emphasize different relationships, we consider those used within the
experiments described by Yao: International Classification of Diseases, Clinical
Modification (ICD9-CM), Systematized Nomenclature of Medicine, Clinical Terms
(SNOMED-CT) and Medical Subject Headings 2009 (MeSH).

For simplicity, we present Table 1 that depicts a juxtaposition between the dif-
ferent types of relationships and components used within the biomedical ontologies
and the SWEET ontologies (the paramount ontologies within the EES domain).
This table clearly demonstrates that these types of ontologies are largely different,
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particularly in their size. While both ontology sets contain the same components
including classes, properties, siblings, and subclasses; the quantity within each is
quite different. Consider that any given SWEET ontology is likely to have around
twenty classes, whereas the smallest of our biomedical ontologies contains over
20,000—a difference of three orders of magnitude. SWEET ontologies as a whole
contain a total of 4.5K classes, it is still two orders of magnitude smaller than
most of these biomedical ontologies.

Initially these differences in size might appear to be trivial because both ontolo-
gies are organized according to the same properties. The methodology for generat-
ing coverage performs a type precision analysis, meaning a larger ontology-under-
test requires a larger corpus to cover every topic and relationship represented in
the ontology. In other words, the interpretation of results and necessary size of the
corpus to ensure a representative topic-set for the domain are affected largely by
the size and scope of the ontology under test. This means that directly translating
a technique designed to evaluate biomedical-ontology-coverage to the EES domain
will likely generate results with a significantly different representation of quality.

However, the basic premise of coverage evaluations is still valid for EES on-
tologies as they share a similar underlying structure. As will be discussed in the
following section, our work expands the biomedical techniques to include a cover-
age approach for the subclass axiom, enabling a greater applicability for the EES
domain and discusses the interpretation of coverage for the EES domain.

5 Synonym Symmetry Methodology

As previously mentioned, the coverage methodology used in this work was intro-
duced by Yao and colleagues [28] for the biomedical domain. Their approach allows
for the quantitative assessment of relevancy for an ontology to a given corpus. To
expand the applicability of their approach for the EES domain, we add a step to
perform Synonym Synergy, which enables the automatic classification of subclass
axioms. Also, it should be noted that for this process we used OWL API1.

The remainder of this section is laid out as follows: next is the formal definitions
for coverage, then an explanation and examples of our novel expansion to the
previously introduced methodology, Synonym Synergy and lastly the eight-step
process to generate coverage for an ontology.

5.1 Coverage Definitions

For disambiguation of discussion, we present the four formal definitions of coverage
that are classified upon completion of this eight step process. Let A be the set of
classes a0, a1...an within ontology X and let B be the set of classes b0, b1...bm within
ontology Y . Then define the Class Coverage of ontology Y on ontology X with the
following equation:

CC =

∑i=m
i=0 Pi

|B| , where Pi =

{
1 if bi ∈ A

0 otherwise
(1)

1 http://owlapi.sourceforge.net/
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This measure captures the fraction of terms from ontology B that are also
present in A.

Let C be the set containing the equivalence relations c0, c1...co within ontology
X and let D be the set containing the equivalence relations d0, d1...dq within on-
tology Y . Then we define Equivalence Coverage (EC) of ontology Y on ontology X

with the following equation:

EC =

∑i=q
i=0 Pi

|D| , where Pi =

{
1 if di ∈ C

0 otherwise
(2)

Let E be the set containing the subclass relations e0, e1...er within ontology X

and let D be the set containing the subclass relations f0, f1...fs within ontology
Y . Then we define Subclass Coverage (SC) of ontology Y on ontology X with the
following equation:

SC =

∑i=s
i=0 Pi

|F | , where Pi =

{
1 if fi ∈ E

0 otherwise
(3)

Lastly, let CCx, ECx, SCx be the Class Coverage, Equivalence Coverage, and the
Subclass Coverage respectively for ontology X. We then define the Breadth Coverage

(BC) of ontology X with the following equation:

BC = g1CC + g2EC + g3SC, where BC <= 1 (4)

where g1, g2, and g3 are user defined constants. These constants can be used
to weight a particular type of coverage more than another. For example, consider
a use case where normal classes are of little importance, subclass axioms are of
primary importance, and equivalence axioms are completely irrelevant; in this case
g1 might be 0.1, g2 might be 0, and g3 might be 0.9. Note that each type of coverage
will always have a score that is less than or equal to one.

5.2 Synonym Synergy

Due to the large quantity of subclass axioms within ontologies representing the
EES domain, we present a novel expansion to the standard methodology presented
by Yao and associates entitled Synonym Synergy. This approach requires a list of
synonym relationships between word pairs. More simply, for a pair of words that
contain a synonym relationship between them, our heuristic calculates whether it
is bi-directional or uni-directional. In this case, we say that a pair of words has a
bi-directional relationship if both words are synonyms of each other. In contrast,
we say that a pair of words has a one-sided or uni-directional relationship if only
one word is the synonym of the other. Visually, this could be represented as a
graph where each word is a node and a directional edge represents a synonym
relationship from one word to another. Figure 1 presents some examples of this
type of analysis.

Consider the following example with the words bovine and cattle. The synonyms
for the word bovine includes cattle, whereas the the synonyms for the word cattle
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Puppy
Doggy
Pooch
Stray

Mongrel
Hound
Mutt

Canine

Bovine

Cattle

Herd
Oxen
Bull
Cow

Calves
Longhorn
Shorthorn
Livestock

Dog

Puppy

Dog
Pup

Canine
Whelp

Headword Synonyms

Cattle
Oxen
Cow
Dull

Bovine Cattle

Dog Puppy

Subclass/
Uni-Directional

Equivalence
Bi-Directional

Synonym Relationships

Fig. 1: An example of using synonym sets to determine equivalence and subclass
relationships.

does not include bovine. In this case, the relationship is one-sided and can be
interpreted in the following way: all bovines are cattle, but not all cattle are
bovines. In other words, bovine is a subclass of cattle.

Synonym Synergy relies on the quality of the thesauri used as an incorrect
listing of synonyms will greatly hamper this process. We limit this threat by lever-
aging seven separate thesauri (see Section 7.4 for a more thorough treatment of
our thesauri).

In addition, even though this process is likely to insert erroneous subclass
relationships into the corpus ontology, these erroneous relationships should have
little to no impact upon the results. Consider an example of the word cow. While
the most common use of the word cow refers to a four-legged animal used on farms,
there is another use of the term that refers to intimidating someone. This means
that it is likely that cow will become a subclass of intimidate. However, because
the methodology performs a type of precision analysis (see Section 5.1), this false
subclass relationship will likely be ignored.

In other words, when we calculate coverage, the heuristic attempts to match
each relationship found within the ontology-under-test to the corpus ontology;
meaning that coverage is only impacted if the ontology-under-test has that exact
same spurious relationship as the corpus ontology using Synonym Synergy. In-
deed, it is exceedingly unlikely that a given EES ontology, which by design topically
only represents EES relationships, will have the exact same spurious relationship
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as generated by this approach. Therefore, these spurious relationships will likely
have little or no impact upon the coverage of the ontology-under-test.

Actually computing the uni-directional or bi-directional relationships for each
word is fairly straight forward. Using a standard dictionary data structure (i.e., a
structure utilizing key-value pairs), we insert each key as a head word, and the
values as a list of synonym words. Consider an abstract example.Imagine that
when creating a corpus ontology, the system finds the word X. First, the system
queries the thesauri to gather a list of synonym words for X. Then the system
inserts X as a key, with the synonyms as its value. Next, for each word in X’s’
value list, the system queries the thesauri to determine whether it contains X. If
it does, the system determines this is a bi-directional relationship (as both words
are synonyms of each other), and if not then it determines this is a uni-direction
relationship, or a subclass (as only one word was a synonym of the other). More
concretely, consider Figure 1. If the word bovine was read, it would be inserted
into the dictionary as a key, and the words: cattle, oxen, cow, and dull would be
inserted into a list that comprises the value. Then for each word (cattle, oxen,
cow and dull) the system would check whether they contain the word bovine as a
synonym (by querying the thesauri). It finds the case of cattle, it does not contain
the synonym bovine, meaning that this relationship is uni-directional (or a subclass
relationship). This process is repeated for each word encountered, and while we
envision that there may be many other ways to compute this directionality, and
do so in an optimized fashion, this method is presented because of its simplicity
to understand and replicate.

In short, Synonym Synergy allows for the use of the natural-language defini-
tions to inform our corpus ontology of potentially meaningful subclass relationships
as defined by the synonym relationship between word pairs.

5.3 Coverage Methodology

Table 2: The statistics for each of thesauri used in this work.

Thesauri Headwords Synonym pairs Synonyms Per Headword
The Synonym Finder [14] 20,249 758,611 37.46
Webster’s New World Roget’s
A-Z Thesaurus [13]

29,925 329,669 11.01

21st Century Synonym and
Antonym Finder [12]

7,507 146,806 19.55

The Oxford Dictionary of
Synonyms and Antonyms [24]

8,487 105,902 12.47

A Dictionary of Synonyms
and Antonyms [5]

3,771 57,366 15.21

Scholastic Dictionary of
Synonyms, Antonyms and
Homonyms [10]

2,147 19,759 9.20

WordNet [20] 115,201 306,472 2.66
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Class Score
Equivalence Score
Subclass Score
Breadth Score

Corpus

 PoS Normalized
Corpus

Normalized 
Corpus

Normalize
Corpus

Filter By
PoS Tag

Thesauri

Synonyms

Synonym Symmetry
Generate
Corpus

Synonyms

Generate Corpus 
Synonyms

Relationships

Corpus Words 
Become Classes

Synonym Words 
Become Classes Associations 

Become
Equivalence and 
Subclass Axioms

Corpus
Ontology

Ontology
Under Test

Perform Coverage 
Analysis

1

2

5

3

6

4

7

8

Fig. 2: A process model for coverage methodology with the step numbers in red
circles. At a high level, the corpus is turned into an ontology and compared against
the ontology under test.
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The coverage methodology presented in this section can be completed in eight
steps as displayed in Figure 2. Each of these steps was introduced by Yao and
colleagues for the biomedical field, and save the introduction of Synonym Syn-

ergy, are only altered slightly to better match the EES domain [28]. The goal is
to calculate coverage for an existing ontology, referred to as the ontology under test.
At a high level of abstraction, this process transforms an existing corpus into an
ontology, and then calculates a type of precision score for the elements within the
ontology under test.

Step 1: Normalize corpus. This step takes as input an existing corpus and pro-
duces a normalized corpus. While normalization can take many forms depending
on the needs of the user, we describe the natural-language processing techniques
used in this paper. First, stem all words within the corpus to reduce words to
their base, thus normalizing tense and plurality. In our case, we used the Porter
stemmer2, which is a rule-based stemmer. Next remove all stop words. Stop words
are short, function words which provide no semantic meaning, but are necessary
for proper speech (e.g., is, the, who, are, and on). Then remove all grammar and
words containing only numeric characters. This filter is important because most
ontology class names contain some alphabetic characters. Lastly change all words
to be lowercase to prevent issues with case sensitivity.

Step 2: Filter Part of Speech (PoS) Tag. This step takes as input a normalized
corpus and produces a corpus only containing words from specific parts of speech.
Because our goal is to transform a corpus full of words into classes and axioms, we
want to filter out those words which are likely not going to be classes. In this case,
we used the Natural-Language-Toolkit part of speech tagger (PoS) to remove all
words which were not nouns, verbs, adverbs, or adjectives [1].

Step 3: Generate Corpus Synonyms. This step takes as input all words from
the normalized, PoS filtered corpus and multiple thesauri to produce a list of
words that are all synonyms of at least one corpus word. In our case, we utilize
seven thesauri (as shown in Table 2) so as to capture any possible synonym of a
word found in our corpus [5, 10, 12–14, 20, 24]. This step ensures that the corpus
ontology we generate will have a large variety of words to describe any particular
topic discussed in the corpus. This helps to prevent an artificially low coverage
score because of word choice.

*Step 4: Generate Corpus Synonym Relationships*. Step four is unique in
that it encompasses our novel expansion Synonym Synergy. This step takes as
input all the words from the normalized, PoS filtered corpus and all the synonym

relationships from our seven thesauri and produces all equivalence and subclass
axioms. By synonym relationships we refer to the potential uni-directionality or
bi-directionality of a word pair experiencing a synonym. We say that two words
are equivalent (and thus contain this axiom) if they both are synonyms of each
other (i.e., their synonymy is bi-directional). However, if for a pair of words only
a single word is a synonym of the other, we classify them as a subclass (i.e., their
synonymy is uni-directional). The rational and limitations of classifying subclasses
this way was be discussed in the previous section.

Step 5: Corpus Words Become Classes. This step takes as input the words
from the normalized, PoS filtered corpus and inserts them as classes into a blank

2 http://tartarus.org/martin/PorterStemmer/
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ontology (heretofore referred to as the corpus ontology). This step is fairly straight-
forward.
Step 6: Synonym Words Become Classes. This step takes as input the words
from generated synonym list and inserts them as classes into a corpus ontology.
This step is fairly straightforward.
Step 7: Associations Become Equivalence and Subclass Axioms. This step
takes as input the results from calculating the synonym symmetry, and inserts
the equivalence and subclass axioms for the corpus ontology. This step is fairly
straightforward.
Step 8: Perform Coverage Analysis. This step takes as input the corpus ontol-
ogy and the ontology under test and produces the class, equivalence, subclass, and
breadth coverage scores. Following the formulas presented in Section 5.1 we can
generate all these scores. For simplicity, we present an example of how the first
three scores are generated; note that the breadth score is simply a linear combi-
nation of the first three scores that equate to less than or equal to one. Consider
a corpus ontology that contained classes

A,B,C,D,E, F

and the ontology under test contained classes

A,B,C,X, Y, Z

We would iterate through each element in the ontology under test set and deter-
mine whether it existed in the corpus ontology set. We would find that while A, B,
and C exist in the corpus ontology set while X, Y, and Z do not. This would result
in a score of 3/6 or 0.5 because three elements matched, and the total cardinality
of the ontology under test is six.

This methodology provides the ability to quantitatively and automatically cal-
culate the relevancy of an ontology for a specific domain.

5.4 Scalability

To better understand the scalability of Synonym Synergy, there are two factors
that need to be considered: creating an ontology from a corpus, and evaluating
coverage for an ontology.

The creation of an ontology for a corpus comprises steps one through seven
of our previously described process. The time taken to perform these steps is
largely dependent upon two things, the number of unique words within the corpus
documents, and the number of headwords and synonym pairs within the combined
thesauri used. In the case of the corpus used in our experiments (which will be
discussed more fully in Section 6), it had over 27,000 unique words (the stats
for our thesauri were described in Table 2). To create our corpus ontology took
roughly 48 minutes on a Intel 2 core 2.13 GHz processor with 4GB of ram. To
create our Tailored corpus (which will be discussed more fully in Section 6), which
had slightly more than 10,000 words took TODO FILL ME IN OMG FILL ME
IN. In both cases, nearly the entire time taken was used to during steps four and
and seven (those steps that compute the directionality of a synonym relationship
for a given word). It should be noted however, that this process (the creation of
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Fig. 3: A boxplot representing the time to calculate coverage for a single ontology
in seconds.

a corpus ontology) is a one time expense. Indeed, as documents are added to the
corpus, these can be added individually (or collectively) to the existing corpus
ontology such that no work needs to be repeated. As such, we feel that this aspect
appears to be very scalable in practice.

To better understand the scalability of coverage evaluation, we present Fig-
ure 3. This boxplot demonstrates (in seconds) how long it takes to generate cover-
age results (i.e., step eight of our process) for a single ontology. It should be noted
that these results come from generating coverage for the SWEET ontologies, which
tend to be small. However, in total we used 217 ontologies, and the median time
is 18 seconds. This means that to generate coverage for all 217 ontologies takes
roughly 65 minutes. While this expense is larger than the creation step, generating
coverage for this large and diverse takes about an hour. Thus, we feel that this
aspect also is very scalable in practice.
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Table 3: Values of our Independent and Dependent variables.

Independent Variables DataONE corpus, Tailored Corpus
Dependent Variables Class, Subclass, Equivalence, and

Breadth Coverage

6 Experiments and Results

One fundamental purpose for the methodology presented in the previous section
is to provide a meaningful representation of the relevancy of an ontology or set
of ontologies for a specific domain. This methodology elucidates understanding as
scientist strive to refine existing ontologies to better approximate the community’s
semantic understanding. Within the Earth and Environmental Sciences domain,
the SWEET ontologies have become the de facto standard. However, there are no
studies that evaluate the relevancy of the SWEET ontologies for this EES domain.
This dearth if studies poses a simple but important research question:

Research Question: In the best case, how well do

the SWEET ontologies match the EES domain?

6.1 Experimental Setup

To answer our research question, we designed the following experiment. At a high
level of abstraction, our experiment works as follows: we leverage multiple corpora,
one of which is designed to specifically match the SWEET ontologies, and another
which comes from an existing EES research lab to calculate the expected coverage
scores for SWEET ontology. Then, by comparing these scores, we can determine
an expected best-case relevancy score.

The outline of our experimental variables is given in Table 3.
Our experiment has two independent variables: the DataONE corpus [19], and

the tailor-made corpus. The DataONE corpus comes from Data Observation Net-
work for Earth foundation, an environmental-science distributed-framework with
multiple data centers and organizations each representing a unique element of the
EES domain. At the time of writing this, the DataONE corpus contains 46,428
documents, each of which is typically smaller than 2 MB. Our initial investigation
leveraging dimensional reduction techniques revealed that this corpus contains
nearly 1,000 unique topics and over 27,000 unique words. This corpus represents
a real corpus used by EES researchers and practitioners.

The tailored corpus is a randomly selected set of documents that have topi-
cal harmony with some of the SWEET ontologies. We followed a straightforward
and simple process to generate this corpus, which is comprised of four steps: (1)
randomly select a SWEET ontology, (2) select three classes at random from said
ontology, (3) search Google Scholar using the three classes as a single query, and
(4) select the top two articles returned by Google Scholar and add them to the
corpus. It is important to note that we repeated this process eight times, result-
ing in a corpus that was comprised of 16 documents from various EES research
journals. For transparency, we briefly describe our rationale behind each of these
steps.
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Step one has us select a SWEET ontology at random. Because no one SWEET
ontology is more important than any other, we wanted to ensure that the topics
reflected in our tailored corpus were randomized with respect to specific SWEET
ontologies. Step two has us select three class names from the selected ontology.
SWEET ontologies on average have around 20 unique classes per ontology. We
select class names from the ontology, to form a type of representative ”topic”
for the given ontology. The number three was used because on average, it was
15% of the total number of classes for any SWEET ontology, which we felt was
sufficient to represent the ontology. Step three has us use Google Scholar to identify
relevant scientific articles. We wanted to ensure that the articles selected were truly
topically similar to the SWEET ontology selected in step one. Thus, we used all
three class names from step two to perform the query with Google Scholar. Google
Scholar was selected because anecdotally it has proven reliable and effective at
discovering relevant articles within the EES domain. Step four has us add the top
two articles returned by Google to the tailored corpus. We choose two articles per
query because there are multiple ways to discuss a topic, and by selecting two
articles there was an increased likelihood that, (1) the topic from the SWEET
ontology was being discussed, and (2) the topic was being discussed in a unique
way, ensuring a greater potential for coverage. This tailored corpus represents
a best case scenario in which the documents that make up the corpus are exactly
what the SWEET ontologies are trying to represent, for the eight selected SWEET
ontologies.

Our process to generate an ontology and calculate coverage for the tailored
corpus follows the same process as identified in Figure 2, but the ”corpus” is
replaced with the ”tailored corpus”, resulting in a ”tailored ontology” after step
7.

For reference, the tailored corpus contains 16 documents, each of which is less
than 100 KB. An initial investigation leveraging dimensional reduction techniques
reveals that this corpus contains roughly 6-10 unique topics and over 10,000 unique
words.

Our four dependent variables are: Class Coverage, Subclass Coverage, Equiva-
lence Coverage, and Breadth Coverage. Each of these coverage types are explicitly
described in Section 5.1. It is of note that while we include equivalence coverage,
very few SWEET ontologies have any equivalence axioms. However, because a few
ontologies possess it, we calculate it with the rest of the more relevant coverage
scores.

The steps to perform our experiment are fairly straightforward. First, trans-
form each corpus into an ontology using the coverage methodology. Second, gen-
erate coverage for each of the SWEET ontologies for each corpus. Third, compare
results for each category. Note that the tailored corpus represents a likely best

possible score given our coverage framework, and represents a potential ideal case.
Thus, the difference between the coverage results from the DataONE corpus and
the tailored corpus provides an empirical baseline as to the expected coverage
given this methodology within the EES domain.
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Table 4: Results from the paired t-tests between the two ontologies.

Dependent Variable P-Value

Class Coverage 0.2723
Subclass Coverage 0.4048
Equivalence Coverage NaN
Breadth Coverage 0.2525

6.2 Experimental Results

We present our results in two subsections, the first examines the difference between
the DataONE corpus and the tailored corpus, and the second compares results
between the SWEET ontologies used to create the tailored corpus, and those not
used.

6.3 DataONE and the Tailored Corpus

Figures 4 and 5 present the coverage scores for the DataONE corpus and the
Tailored corpus respectively. When considering the tailored corpus, it should be
noted that out of 217 SWEET ontologies, 29 had zero for each dependent variable,
170 had positive scores only for class and breadth coverage, and 18 had a positive
score on class, subclass and breadth coverage, but no ontology had a positive
score for equivalence. However, when considering the DataONE corpus, it should
be noted that out of 217 SWEET ontologies, 26 had zero for each dependent
variable, 169 has positive scores only for class and breadth coverage, and 22 had a
positive score on class, subclass and breadth coverage, but again no ontology had
a positive score for equivalence. Further, the ontologies which received a score of
zero on all dependent variables was different for each corpus.

These figures both display an average class score of 36%, an average subclass
score of around 4% and a breadth score around 12%. When calculating the breadth
score, we weighted all categories equally. That being said, due to the zero scores
in the equivalence coverage category, the breadth score appears artificially low.
Indeed, if equivalence coverage (an axiom not very relevant to the SWEET on-
tologies) were removed from this calculation, the breadth score mean would be in
the low thirties.

These figures also display a large potential range. While some ontologies score
zero in all categories, other ontologies score nearly 90% in class coverage. It is
significant that no ontology scores over 10% in subclass coverage.

Lastly, we performed a paired t-test for each dependent variable between the
two corpora. The results of these t-tests are presented in Table 5. It should be noted
that in this case, the equivalence coverage results were identical between the two
corpora (all zeros) resulting in an incalculable score. In this case the graphs of
these two results visually appear very similar, and our statistical test affirms that
indeed there is no statistically significant difference between them.
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Fig. 4: A boxplot representing the coverage for each of our dependent variables
on the DataONE corpus. The center line is the mean, the box represents the first
and third quartiles and the dotted lines represent the min and max.

6.4 Tailored Corpus

Figures 6 and 6 represent two coverage analyses using the tailored corpus. Figure 6
presents coverage with only those SWEET ontologies which were not used to create
the tailored corpus, and Figure 6 presents coverage of only the SWEET ontologies
used to created the tailored corpus. Thus, Figure 6 can be considered the best
possible score given out approach. For simplicity of discussion, we refer to the
results utilizing only those ontologies that were used to create the tailored corpus
as the golden results, and the others as the non-golden results.

When considering the golden results, it should be noted that out of 8 SWEET
ontologies, none had zero for each dependent variable, and all had positive scores
only for class, subclass and breadth coverage, but no ontology had a positive score
for equivalence. However, when considering the non-golden results, it should be
noted that out of 209 SWEET ontologies, 26 had zero for each dependent variable,
169 has positive scores only for class and breadth coverage, and 14 had a positive
score on class, subclass and breadth coverage, but again no ontology had a positive
score for equivalence. Further, the ontologies which received a score of zero on all
dependent variables was different for each corpus.

Thus, of note first is that there are two primary differences between these re-
sults: (1) the golden results score positively in every variable (except equivalence),
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Fig. 5: A boxplot representing the coverage for each of our dependent variables on
the tailored corpus. The center line is the mean, the box represents the first and
third quartiles and the dotted lines represent the min and max.

whereas the non-golden results had only 14 ontologies gain a positive score in each
variable; and (2) the golden results score significantly higher in class score and
breadth than the non-golden results.

The golden results display a median class score of 59%, a median subclass score
of around 6% and a breadth score around 21%. In contrast, the non-golden results
display a median class score of 38%, a median subclass score of around 0% and
a breadth score around 14%. When calculating the breadth score, we weighted
all categories equally. That being said, due to the zero scores in the equivalence
coverage category, the breadth score appears artificially low. Indeed, if equivalence
coverage (an axiom not very relevant to the SWEET ontologies) were removed from
this calculation, the breadth score mean would be in the low thirties.

These figures also display a difference in the large potential range of some
variables. For example, when considering the non-golden results, some ontologies
score zero in all categories, other ontologies score nearly 90% in class coverage.
However, the golden results never score below 55% in terms of class score. It is
significant that no ontology scores over 10% in subclass coverage.

Lastly, we performed a paired t-test for each dependent variable between the
two results. The results of these t-tests are presented in Table 5. It should be
noted that in this case, the equivalence coverage results were identical between
the two corpora (all zeros) resulting in an incalculable score. In this case the
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Table 5: Results from the paired t-tests between the two ontologies.

Dependent Variable P-Value

Class Coverage p <0.05
Subclass Coverage p <0.05
Equivalence Coverage NaN
Breadth Coverage p <0.05
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Fig. 6: A boxplot representing the coverage for each of our dependent variables on
the tailored corpus when only considering those ontologies not used in creating the
corpus. The center line is the mean, the box represents the first and third quartiles
and the dotted lines represent the min and max.

graphs of these two results visually appear very dissimilar, and our statistical test
affirms that indeed there is a statistically significant difference between them when
considering class, subclass, and breadth scores.

7 Discussion

While the previous section described the results of our experiment, we present our
discussion here.
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Fig. 7: A boxplot representing the coverage for each of our dependent variables
on the tailored corpus when only considering those ontologies used in creating the
corpus. The center line is the mean, the box represents the first and third quartiles
and the dotted lines represent the min and max.

7.1 Relevancy of SWEET

When considering the results of the tailored corpus on all the SWEET ontologies,
we were initially surprised to see scores so low. Indeed, finding that on average
less than 40% of the classes of a given ontology were found within the corpus was
somewhat shocking. However, it should be remembered that the SWEET ontology
set has over two-hundred ontologies, and our process to generate the tailored
corpus only drew topics from eight of them. Thus, when considering only those
eight, having an median class score of 59%, signified a substantial improvement
meaning that the scores would likely have been much higher if we had added
articles to represent each ontology within the SWEET set. That being said, a likely
interpretation of these results is that the SWEET ontologies cover a significant
quantity of disjoint topics within the EES community, such that discussing one,
does not entail even referencing the other; and simultaneously that some SWEET
ontologies contain significant overlap (such that the topics found within eight of
the set, can generate a score around 40% overall). This would explain the numbers
with the tailored corpus within the class scores.

However, it is significant that overall, the SWEET ontologies received a sta-
tistically identical set of scores for the DataONE corpus. This result means that
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regardless of whether we used the tailored corpus, which was generated to specifi-
cally match the topics of SWEET, or a real-life corpus from the EES community,
the SWEET ontologies are expected to get statistically identical relevancy scores.
This finding is significant as it points to the quality and domain relevancy of the
SWEET ontologies to the EES community.

It is also of significance that the ontologies which scored high (and low respec-
tively) were different for each corpus. Indeed, some ontologies received all zeros
with one corpus and received relatively high scores for the other corpus. This re-
sult demonstrates that while our corpora described topically different sets, the
SWEET ontologies were still able to cover them.

The answer to our research question is that the
SWEET ontologies accurately represent the EES
domain and that using this coverage methodology
will likely provide a best-case score around 70% for
classes, 7% for subclasses, and 40% for breath (if
equivalence axioms are ignored).

7.2 Value of Synonym Synergy

As for the low subclass score, we attribute this to a deficiency within the Synonym

Synergy approach, more than a demonstration of limitations within the SWEET
ontologies. This is because not all subclass relationships can be identified using
Synonym Synergy. For example, hunger is a subclass of needs, but they share
no synonym relationship. In other words, while there is a relationship between
these ideas conceptually, their alphabetic words share no association. However, we
do not take this to mean that Synonym Synergy is not valid or useful. Indeed,
our results demonstrate that while not all or even most relationships between
ideas share an alphabetic tie, a significant portion do. Synonym Synergy allowed
for the coverage of nearly 10% of all subclass relationships within the SWEET
ontologies. Further, Synonym Synergy requires only a thesaurus as a new in-
formation source. As mentioned earlier, many existing techniques require specific
hand-crafted heuristics or standards to evaluate quality, whereas this approach is
lightweight and automatic in comparison while still producing meaningful scores.
In other words, Synonym Synergy is valuable though not sufficient in isolation.
While we believe this to be a good first step, and these results show promise, more
approaches are needed to approximate the relationships between ideas within an
ontology.

Our results indicate that Synonym Synergy can suc-
cessfully identify and enable the coverage of non-
trivial subset of subclass axioms. However the use
of directional synonymy is not sufficient to capture
all subclass relationships.

7.3 Applicability of Coverage Methodology

One cause for the low scores in all categories was found in the way our method-
ology works, and the classes within the SWEET ontology. Remember that our
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methodology (as described in Section 5.3) parses words from natural text, mean-
ing they are very unlikely to get camel-cased words (e.g., humanNeeds, polluted-
Land, or bigBusiness) as they are typically not used within normal English text.
In contrast, the SWEET ontology frequently uses camel-cased class names. Our
methodology cannot match these with its existing implementation, meaning that
these classes (or axioms containing these classes) are currently uncoverable. Con-
sider that the SWEET ontologies we used contain 8,641 unique classes, and that
3,775 are camel cased; meaning 43.6% of the classes we observed were uncoverable
using our methodology (i.e., at best, coverage could score 57% and the average
class score was nearly 40%). This explains a large degree of the missed classes and
subclasses.

Another limitation of this methodology is that it does not take into account
misspellings or abbreviations. For example, if a document contained a typo (which
is translated to a misspelled class), it would likely be ignored by our thesauri (as
it is not a real word), and represent a hole where ontologies would be unable to
find coverage, even if they are describing the same thing. This type of problem has
been addressed in natural-language research with techniques like fuzzy-spelling,
but none are implemented in our methodology. In addition, the limitation with
abbreviations is that in many cases, these require a type of usage dictionary [15] to
guide a heuristic in selecting the correct expansion of a word. These dictionaries
are important as abbreviations have different meanings in different contexts. For
example, consider mem. Mem is likely memory when found within computer programs,
but is a letter of the alphabet when discussing in Hebrew and Arabic. Having a
usage dictionary to expand these to the proper word for a given domain would
also likely increase the quality of the coverage result.

We found that this approach from the biomedical
domain applicable in the EES domain, though it re-
quires alterations to account for different axioms (i.e.,
subclass and restrictions) the use of camel-case, and
how results are interpreted.

7.4 Multiple Thesauri

As mentioned in Section 5.3 and in Table 2, our approach leveraged seven thesauri
including WordNet. However, many research endeavors using synonyms have relied
exclusively upon WordNet as it is an easily available tool that provides synonym
sets for any given word within its database. Indeed, looking back at Table 2 it is
important that WordNet has more headwords than all of the other six thesauri
combined. A reasonable question then might be, why not exclusively use WordNet,
or in other words, why use seven thesauri?

One of the main efforts of the methodology is to create an ontology from the
corpus that represents a domain. It does this by ensuring that issues such as word
choice, are addressed. For example, without synonyms consider a corpus that used
the word puppy but the ontology-under-test contained the class dog; this would
result in a hole in the coverage notwithstanding the idea being present in the
corpus. Thus it is of critical importance that all possible synonyms are captured
when the thesaurus is checked in step 3.
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One way to ensure that no synonyms are missed is to include more thesauri with
different headwords and synonyms. If each thesaurus has only a small quantity of
overlap, then we likely are going to ensure fewer missed synonyms. Indeed, Yao
and colleges present a discussion on these seven exact thesauri and demonstrate
that they have very little overlap (i.e., most headwords and synonyms within a
thesaurus are unique when compared to the other six) [28].

Another concern with exclusively using WordNet is that while it has a lot of
headwords, it has relatively few synonyms. We can easily calculate on average,
how many synonyms exist per headword within a given thesaurus. Given our goal
to not miss any synonym, ideally the perfect thesauri for this methodology would
have high synonym-per-headword ratio and a high quantity of headwords. Table 2
displays these quantities. We find that while WordNet has the most headwords,
it has the fewest synonyms-per-headword by a factor five to ten. This means that
while there are many headwords in WordNet, it contains the fewest synonyms for
any given headword (on average). In this case, we see that WordNet would not be
sufficient, and in one way is the least ideal for our methodology.

The coverage methodology utilized in our study re-
quires a large quantity of headwords and synonyms-
per-headword making WordNet in isolation not suf-
ficient or ideal. A larger set of thesauri with non-
overlapping words is more likely to generate mean-
ingful results.

8 Conclusions and Future Directions

This work has presented an expansion to, and empirical investigation of the appli-
cability of existing ontology coverage techniques for the Earth and Environmental
Sciences (EES) domain as well as experiments to empirically evaluate the relevancy
of the SWEET ontologies to the EES domain.

Due to the domain specificity of ontology organization (e.g., size or number of
axioms), it was unclear whether the coverage techniques used in other fields would
provide meaningful results for the EES domain. We investigated the assumptions
and organizations of ontologies within the biomedical field and found them to
be substantially different from the paramount ontologies within the EES domain
(i.e., the SWEET ontologies). We found that while the underlying assumptions
were similar enough to warrant the use of existing biomedical-ontology-coverage
techniques within the EES domain, the results were likely to be significantly dif-
ferent.

In addition to the use of existing techniques, we provided a novel expansion
called Synonym Synergy. Synonym Synergy uses thesauri to capture subclass
relations and enable their coverage. Our study demonstrated that Synonym Syn-

ergy enabled the coverage of roughly 10% of all subclass relationships within the
SWEET ontologies. These results reinforced that Synonym Synergy is valuable in
that it captures those subclass relations where the alphabetic name of the classes
also share a relationships, but does not capture those relationships where only the
ideas share a relationship. In other words, Synonym Synergy is useful to cap-
ture some subclass relations, but not sufficient to capture a majority of subclass
relations.
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Lastly, we performed an experiment upon the SWEET ontologies. While preva-
lent within the EES domain, there were currently no studies to validate their use
or relevancy. Our studies found that the SWEET ontologies had a statistically
identical coverage score to a real-world EES corpus as they did to a hand-tailored
ontology specifically chosen to represent the SWEET ontologies. This investigation
suggested that the SWEET ontologies do sufficiently represent the EES domain,
and are broad in their topic coverage.

In the future, this work can be improved upon in a few key areas. First, Syn-
onym Synergy can be improved upon through additional heuristics that capture
a greater percentage subclass relationships. Further, techniques which can capture
other relationships (e.g., restrictions) would also be valuable. In addition, more
experiments with varied corpora would provide greater confidence in generaliz-
ability of these results and increase understanding as to the domain-specificity of
our findings. Lastly, simple additions that account for camel-cased class-names,
and the matching of misspellings and abbreviations within the corpus will likely
improve the results of the coverage.
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